
Introduction - What is Machine Learning?

At the intersection between Applied Mathematics, Computer Science, and Biological Sciences is a subset
of knowledge known as Bioinformatics. Some find Bioinformatics and its cousin Data Science difficult to
define. However, the most ubiquitous pictograph of Bioinformatics and Data Science may say a thousand
words even if we cannot. See Figure 1. What separates these two pursuits is the domain knowledge that
each focus on. Where Data Science may focus on understanding buying habits of individuals, Bioinformatics
tends to focus on the understanding of DNA and its relevance to disease. It is now common to find new fields
emerging such as the study of chemistry using applied mathematics and computers which beget the field
of Chemo-informatics.1 2 Today, since hospitals are warehouses of modern medical records and knowledge
they make career paths such as Healthcare-Informatics possible.3

Figure 1: Venn Diagrams of Bioinformatics And Data Science
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Generally speaking, Bioinformatics derives its knowledge from various items. To start our data may consist of
numbers, text and even pictures as input. Numerical values may be from scientific sensors or instrumentation,
such as Next Generation5 DNA sequence data.6 Text data is sourced from articles/books or even databases
of scientific articles like PubMed which show the inter-connectivity of thought and research.7 Graphics and
pictures include graphical forms, such as relationship data that appears in genomic or proteomic or metabolic
databases.8

However, Bioinformatics and Data Science imply a process as well. One piece of this process is Reproducible
Research.9 Reproducible Research and replication are linked but it goes beyond the ability of the work to

1https://www.acs.org/content/acs/en/careers/college-to-career/chemistry-careers/cheminformatics.html
2https://jcheminf.biomedcentral.com/
3https://www.usnews.com/education/best-graduate-schools/articles/2014/03/26/consider-pursuing-a-career-in-health-

informatics
4http://omgenomics.com/what-is-bioinformatics/
5What is Next-Generation DNA Sequencing?, https://www.ebi.ac.uk/training/online/course/ebi-next-generation-

sequencing-practical-course/what-you-will-learn/what-next-generation-dna-
6http://www.genome.ucsc.edu/
7https://arxiv.org/
8https://www.ebi.ac.uk/training/online/course/proteomics-introduction-ebi-resources/what-proteomics
9Roger Peng, The Real Reason Reproducible Research is Important, https://simplystatistics.org/2014/06/06/the-real-

reason-reproducible-research-is-important/
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be independently verified. The computer code and data must be provided. There locations explicitly spelled
out such that other scientists may find and carry on the work and check all its calculations and methodology.
Now that computers play such a large role procedurally the smallest error in a spreadsheet may plague the
overall conclusion. Such is the case of the University of Mass. at Amherst found errors in a Harvard research
paper.10

Machine Learning Is?

“Machine learning is essentially a form of applied statistics with increased emphasis on the use of
computers to statistically estimate complicated functions and a decreased emphasis on proving
confidence intervals around these functions”
— Ian Goodfellow, et al11

What is Predictive Modeling?

Although what this paper discusses is Predictive Modeling, it is under the umbrella of Machine Learning.
The term ‘Predictive Modeling’ should bring to mind work in the computer science field, also called Machine
Learning (ML), Artificial Intelligence (AI), Data Mining, Knowledge discovery in databases (KDD), and
possibly even encompassing Big Data as well.

“Indeed, these associations are appropriate, and the methods implied by these terms are an
integral piece of the predictive modeling process. But predictive modeling encompasses much
more than the tools and techniques for uncovering patterns within data. The practice of predictive
modeling defines the process of developing a model in a way that we can understand and quantify
the model’s prediction accuracy on future, yet-to-be-seen data.”
Max Kuhn12

As an aside, I use Predictive Modeling and Machine Learning interchangeably in this document.

In the booklet entitled “The Elements of Data Analytic Style,” 13 there is an useful checklist for the uniniti-
ated into the realm of science report writing and, indeed, scientific thinking. A shorter, more succinct listing
of the steps, which I prefer, and is described by Roger Peng in his book, The Art Of Data Science. The book
lists what he describes as the “Epicycle of Analysis.” 14

The Epicycle of Analysis

1. Stating and refining the question,
2. Exploring the data,
3. Building formal statistical models,
4. Interpreting the results,
5. Communicating the results.

10https://www.chronicle.com/article/UMass-Graduate-Student-Talks/138763
11Ian Goodfellow, Yoshua Bengio, Aaron Courville, ‘Deep Learning’, MIT Press, 2016, http://www.deeplearningbook.org
12Max Kuhn, Kjell Johnson, Applied Predictive Modeling, Springer, ISBN:978-1-4614-6848-6, 2013
13Jeff Leek, The Elements of Data Analytic Style, A guide for people who want to analyze data., Leanpub Books, http:

//leanpub.com/datastyle, 2015
14Roger D. Peng and Elizabeth Matsui, The Art of Data Science, A Guide for Anyone Who Works with Data, Leanpub

Books, http://leanpub.com/artofdatascience, 2015
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Predictive Modeling

In general, there are three types of Predictive Modeling or Machine Learning approaches;

1. Supervised,
2. Unsupervised,
3. Reinforcement.

Due to the fact this paper only uses Supervised & Unsupervised learning and for the sake of this brevity, I
discuss only the first two types of Predictive Models.

Supervised Learning

In supervised learning, data consists of observations xi (where X may be a matrix of < values) AND a
corresponding label, yi. The label y maybe anyone of C classes. In our case of a binary classifier, we have
{‘Is myoglobin’, ‘Is control’}.

Data set:

• (X1, y1), (X2, y2), ..., (XN , yN );

• y ∈ {1, ..., C}, where C is the number of classes

A machine learning algorithm determines a pattern from the input information and groups this with its
necessary title or classification.

One example might be that we require a machine that separates red widgets from blue widgets. One predictive
algorithm is called a K-Nearest Neighbor (K-NN) algorithm. K-NN looks at an unknown object and then
proceeds to calculate the distance (most commonly, the euclidean distance) to the K nearest neighbors. If
we consider the figure below and choose K = 3, we would find a circumstance as shown. In the dark solid
black on the K-Nearest-Neighbor figure, we find that the green widget is nearest to two red widgets and one
blue widget. In the voting process, the K-NN algorithm (2 reds vs. 1 blue) means that the consignment of
our unknown green object is red.

For the K-NN algorithm to function, the data optimally most be complete with a set of features and a label
of each item. Without the corresponding label, a data scientist would need different criteria to track the
widgets.

Five of the six algorithms that this report investigates are supervised. Logit, support vector machines, and
the neural network that I have chosen require labels for the classification process.
15

What is a shallow learner?

Let us investigate the K-NN algorithm and figure 2.2 (K-Nearest-Neighbor) a little further. If we change
our value of K to 5, then we see a different result. By using K = 5, we consider the out dashed-black line.
This more considerable K value contains three blue widgets and two red widgets. If we ask to vote on our
choice, we find that 3 blue beats the 2 red, and we assign the unknown a BLUE widget. This assignment is
the opposite of the inner circle.

If a researcher were to use K-NN, then the algorithm would have to test many possible K values and compare
the results, then choose the K with the highest accuracy. However, this is where K-NN falters. The K-NN
algorithm needs to keep all data points used for its initial training (accuracy testing). Any new unknowns
could be conceivably tested against any or all the previous data points. The K-NN does use a generalized

15https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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Figure 2: Example of K-Nearest-Neighbor

rule that would make future assignments quick on the contrary. It must memorize all the points for the
algorithm to work. K-NN cannot delete the points until it is complete. It is true that the algorithm is simple
but not efficient. Matter and fact, as the number of feature dimensions increases, this causes the complexity
(also known as Big O) to rise. The complexity of K-NN is O(K-NN) ∝ nkd.

Where n is the number of observations, k is the number of nearest neighbors it must check, and d is the
number of dimensions.16

Given that K-NN tends to ‘memorize’ its data to complete its task, it is considered a lazy and shallow
learner. Lazy indicates that the decision is left to the moment a new point is learned of predicted. If we
were to use a more generalized rule, such as {Blue for (x ≤ 5)} this would be a more dynamic and more
in-depth approach by comparison.

Unsupervised Learning

In contrast to the supervised learning system, unsupervised learning does not require or use a label or
dependent variable.

Data set:

• (X1), (X2), ..., (XN )

• No Y

where X may represent a matrix of m observations by n features with < values.

Principal Component Analysis is an example of unsupervised learning, which we discuss in more detail in
chapter 3. The data, despite or without its labels, are transformed to provide maximization of the variances
in the dataset. Yet another objective of Unsupervised learning is to discover “interesting structures” in the
data.17 There are several methods that show structure. These include clustering, knowledge discovery of
latent variables, or discovering graph structure. In many instances and as a subheading to the aforementioned
points, unsupervised learning can be used for dimension reduction or feature selection.

Among the simplest unsupervised learning algorithms is K-means. K-means does not rely on the class labels
of the dataset at all. K-means may be used to determine any number of classes despite any predetermined

16Olga Veksler, Machine Learning in Computer Vision, http://www.csd.uwo.ca/courses/CS9840a/Lecture2_knn.pdf
17Kevin Murphy, Machine learning a probabilistic perspective, 2012, ISBN 978-0-262-01802-9
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values. K-means can discover clusters later used in classification or hierarchical feature representation. K-
means has several alternative methods but, in general, calculates the distance (or conversely the similarity)
of observations to a mean value of the Kth grouping. The mean value is called the center of mass, the
Physics term that provides an excellent analogy since the center of mass is a weighted average. By choosing
a different number of groupings (values of K, much like the K-NN), then comparing the grouping by a
measure of accuracy, one example being, mean square error.

Figure 3: Example of K-Means

18

Five Challenges In Predictive Modeling

To many predictive modeling is a panacea for all sorts of issues. Although it does show promise, some hurdles
need research. Martin Jaggi19 has summarized four points that elucidate current problems in the field that
need research. To this list, I have added one more point, which is commonly called the Vaiance-Bias Tradeoff.

Problem 1: The vast majority of information in the world is unlabeled, so it would be advantageous to
have a good Unsupervised machine learning algorithms to use,

Problem 2: Algorithms are very specialized, too specific,

Problem 3: Transfer learning to new environments,

Problem 4: Scale, the scale of information is vast in reality, and we have computers that work in gigabytes,
not the Exabytes that humans may have available to them. The scale of distributed Big Data,

The specific predictive models which are executed in this report are discussed in further detail in their own
sections.

Problem 5: Bias-Variance Trade-Off.

The ability to generalize is a key idea in predictive modeling. This idea harkens back to freshman classes
where one studied Student’s t-test and analysis of variance.

E

[(
y0 − f̂(x0)

)2
]

= V ar(f̂(x0)) +
[
Bias(f̂(x0))

]2
+ V ar(ε) (1)

The bias-variance dilemma can be stated as follows.20

18https://www.slideshare.net/teofili/machine-learning-with-apache-hama/20-KMeans_clustering_20
19https://www.machinelearning.ai/machine-learning/4-big-challenges-in-machine-learning-ft-martin-jaggi-2/
20Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning; Data Mining, Inference, and

Prediction, https://web.stanford.edu/~hastie/ElemStatLearn/, 2017
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Figure 4: Bias-Variance Tradeoff
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1. Models with too few parameters are inaccurate because of a large bias: they lack flexibility.
2. Models with too many parameters are inaccurate because of a large variance: they are too

sensitive to the sample details (changes in the details will produce huge variations).
3. Identifying the best model requires controlling the “model complexity”, i.e., the proper

architecture and number of parameters, to reach an appropriate compromise between bias
and variance.

One very good example is seen in figure 2.4, Bias-Variance Tradeoff. By considering the yellow-orange line
we find a simple slope intercept model (y ∝ k · x) where the variance is high but the bias low and is not
flexible enough. This is called underfitting. Looking at the green-blue line we see it follows the data set
much more closely, e.g. (y ∝ k · x8). Here the variance is very low but common sense tells us that the line
is overfit and would not generalize well in a real world setting. Finally leaving us with the black line which
does not appear to have too many parameters, (y ∝ k · x3).

Research Description

Is there a correlation between the data points, which are outliers from principal component analysis (PCA),
and six types of predictive modeling?

This experiment is interested in determining if PCA would provide information on the false-positives and
false-negatives that were an inevitable part of model building and optimization. The six predictive models
that have chosen for this work are Logistic Regression, Support Vector Machines (SVM) linear, polynomial
kernel, and radial basis function kernel, and a Neural Network.

I have studied six different M.L. algorithms using protein amino acid percent composition data from two
classes. Class number 1 is my positive control which is a set of Myoglobin proteins, while the second class
is a control group of human proteins that do not have Fe binding centers.

Group Class Number of Class Range of Groups
Controls 0 or (-) 1216 1, . . . , 1216
Myoglobin 1 or (+) 1124 1217, . . . , 2340

It is common for Data Scientists to test their data sets for feature importance and feature selection. One
test that has interested this researcher is Principal component analysis. It can be a useful tool. PCA is an
unsupervised machine learning technique which “reduces data by geometrically projecting them onto lower
dimensions called principal components (PCs), with the goal of finding the best summary of the data using
a limited number of PCs.” 21 However, the results that it provides may not be immediately intuitive to the
layperson.

How do the advantages and disadvantages of using PCA compare with other machine learning techniques?
The advantages are numerable. They include dimensionality reduction and filtering out noise inherent in
the data, and it may preserve the global structure of the data. Does the global and graphical structure of
the data produced by the first two principal components provide any insights into how the predictive models
of Logistic Regression, Neural Networks utilizing auto-encoders, Support Vector Machines, and Random
Forest? In essence, is PCA sufficiently similar to any of the applied mathematics tools of more advanced
approaches? Also, this work is to teach me machine learning or predictive modeling techniques.

The data for this study is from the Uniprot database. From the Uniprot database was queried for two protein
groups. The first group was Myoglobin, and the second was a control group comprised of human proteins
not related to Hemoglobin or Myoglobin. See Figure 1.5, Percent Amino Acid Composition. There have

21Jake Lever, Martin Krzywinski, Naomi Altman, Principal component analysis, Nature Methods, Vol.14 No.7, July 2017,
641-2
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been a group of papers that are striving to classify types of proteins by their amino acid structure alone.
The most straightforward classification procedures involve using the percent amino acid composition (AAC).
The AAC is calculated by using the count of an amino acid over the total number in that protein.

• Percent Amino Acid Composition:

%AACX = NAmino Acid X

Total N of AA
(2)

The Exploratory Data Analysis determines if features were skewed and needed must be transformed. In
a random system where amino acids were chosen at random, one would expect the percent amino acid
composition to be close to 5%. However, this is far from the case for the Myoglobin proteins or the control
protein samples. On top of this the differences between the myoglobin and control proteins can be as high
as approximately 5% with the amino acid Lysine, K.

Figure 5: Mean Percent Amino Acid Compositions For Control And Myoglobin

Exploratory Data Analysis (EDA)

During EDA, the data is checked for irregularities, such as missing data, outliers among features, skewness,
and visually for normality using QQ-plots. The only irregularity that posed a significant issue was the
skewness of the amino acid features. Many of 20 amino acid features had a significant number of outliers,
as seen by Boxplot analysis. However, only three features had skew, which might have presented a problem.
Dealing with the skew of the AA was necessary since Principal Component Analysis was a significant aspect
of this experiment.

Testing determined earlier that three amino acids (C, F, I) from the single amino acid percent composition
needs transformation by using the square root function. The choice of transformations was natural log, log
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base 10, squaring (x2), and using the reciprocal (1/x) of the values. The square root transformation lowered
the skewness to values of less than 1.0 from high points of greater than 2 in all three cases to {-0.102739 ≤
skew after transformation ≤ 0.3478132}.

Amino Acid Initial skewness Skew after square root transform
C, Cysteine 2.538162 0.347813248
F, Phenolalanine 2.128118 -0.102739748
I, Isoleucine 2.192145 0.293474879

Three transformations take place for this dataset.

~/00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv and used throughout the rest of the analysis.

All work uses R22, RStudio23 and a machine learning library/framework caret.24

Caret library for R

The R/caret library is attractive to use for many reasons. It currently allows 238 machine learning models
that use different options and data structures.25 The utility of caret is that it organizes the input and output
into a standard format making the need for learning only one grammar and syntax. Caret also harmonizes
the use of hyper-parameters. Work becomes reproducible. Setting up the training section for caret, for this
experiment, can be broken into three parts.

Tuning Hyper-parameters

The tune.grid command set allows a researcher to experiment by varying the hyper-parameters of the given
model to investigate optimum values. Currently, there are no algorithms that allow for the quick and robust
tuning of parameters. Instead of searching, a sizable experimental space test searches an n-dimensional grid
in a full factorial design if desired.

Although some models have many parameters, the most common one is to search along a cost hyper-
parameter.

“The function we want to minimize or maximize is called the objective function or criterion. When
we are minimizing it, we may also call it the cost function, loss function, or error function.”26

The cost function (a term derived from business modeling, i.e., optimizing the cost) is an estimate as to how
well models predicted value fits from the actual value. A typical cost function is the squared error function.

Example Cost Function: 27

Cost =
(
yi − f̂(xi)

)2
(3)

It may be important to search the literature to determine if other researchers have used a specific range of
optimum value, which may speed a search. For example, C.W. Hsu et al. suggest using a broad range of 20
orders of magnitude of powers of 2,

22https://cran.r-project.org/
23https://rstudio.com/
24http://topepo.github.io/caret/index.html
25http://topepo.github.io/caret/available-models.html
26Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, http://www.deeplearningbook.org, 2016
27Roberto Battiti and Mauro Brunato, The LION way. Machine Learning-Intelligent Optimization, LIONlab, University of

Trento, Italy“, 2017”, http://intelligent-optimization.org/LIONbook
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R Code: Using TuneGrid command to test sequences of number such that the optimal cost function can
be sought.

# tuneGrid = svmLinearGrid
svmLinearGrid <- expand.grid(C = c(2^(seq(-5, 15, 2))))

expand.grid will produce a sequence of numbers (in our case) from 2−5, 2−3 to 215 to be tested as values
for the cost function.

Then switch to 4 or 5 orders of magnitude with 1/4 log steps,28

e.g. cost = expand.grid(c(2ˆ(seq(1, 5, 0.25))))

for a finer search gird.

K-Fold Cross validation of results

Another valuable option that caret has is the ability to cross-validate results.

Cross-validation is a statistical method used to estimate the skill of machine learning models.29

“The samples are randomly partitioned into k sets of roughly equal size. A model is fit using all
samples except the first subset (called the first fold). The held-out samples are used for prediction
by the recent model. The performance estimate measures the accuracy of the out of bag or held
out samples. The first subset is returned to the training set, and the procedure repeats with the
second subset held out, and so on. The k resampled estimates of performance are summarized
(usually with the mean and standard error) and used to understand the relationship between the
tuning parameter(s) and model utility.”30

Cross-validation has the advantage of using the entire dataset for training and testing, increasing the oppor-
tunity that more training samples produce a better model.

R Code: 10 Fold cross-validation repeated 5 times

fitControl <- trainControl(method = "repeatedcv", # Type of Cross-Validation
number = 10, # Number of splits
repeats = 5, # Produce 5 replicates
savePredictions = "final") # Save FP/FN predictions

Train command

The training command produces an object of the model. The first line should point out the “formula,” which
is modeled. The dependent variable is first. The ~ (Tilda sign) indicates a model is called. Then the desired
features can be listed or abbreviated with the all (.) sign.

R Code: Train command

model_object <- train(Class ~ ., # READ: Class is modeled by all features.
data = training_set, # Data used
trControl = fitControl, # Cross Validation setup
method = "svmLinear", # Use caret ML method
tune.Grid = Grid) # Hyperparameter grid exploration

28Chih-Wei Hsu, et al., A Practical Guide to Support Vector Classification, 2016, http://www.csie.ntu.edu.tw/~cjlin
29https://machinelearningmastery.com/k-fold-cross-validation/
30Max Kuhn, Kjell Johnson, Applied Predictive Modeling, 2013, ISBN 978-1-4614-6848-6
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Analysis of results

In binary classification, a two by two contingency table describes predicted versus actual value classifications.
This table is also known as a confusion matrix for machine learning students. It is also known as a two by
two contingency table in statistics.

2 x 2 Confusion Matrix Actual = 0 Actual = 1
Predicted = 0 True-Negatives False-Negatives
Predicted = 1 False-Positives True-Positives

There are many ways to describe the results further using this confusion matrix. However, Accuracy is used
for all comparisons.

Accuracy = TP + TN

NT otal
(4)

The second goal of this experiment is to produce the False Positives and False-Negatives and evaluating these
by comparing them to the Principal Component Analysis Biplot of the first two Principal Components.

11



Exploratory Data Analysis

“Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main
characteristics, often with visual methods.” 1

Introduction

The experiment described herein involves taking groups of proteins from the Uniprot.org database and
comparing how well different machine learning techniques do at separating the positive from the negative
control grouping. In this circumstance, proteins from the myoglobin family are analyzed against randomly
chosen human proteins, which are not related to hemoglobin or myoglobin.

This work is to characterize the anomalous points derived from PCA and compare them to the false-positives
and false-negatives generated from each of six machine learning approaches produces. For the sake of this
paper anomalous points are defined as values greater than the absolute value of three times the standard
deviation from of the first and second principal components.

Anomalous Points > |3σ| where σ =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (1)

Therefore the M.L techniques will be:

1. Principal Component Analysis,
2. Logistic Regression,
3. SVM-Linear,
4. SVM-polynomial,
5. SVM-RBF,
6. Neural Network.

Four-Step Analysis

At this stage, data is inspected in a careful and structured way. Hence, I have chosen a four-step process:

1. Hypothesize,
2. Summarize,
3. Visualize,
4. Normalize.

Useful Guides for Exploratory Data Analysis

The summarization of the amino acid dataset is based on a hybrid set of guidelines;

1. NIST Handbook of Statistics,2
2. Exploratory Data Analysis With R by Roger Peng,3
3. Exploratory Data Analysis Using R by Ronald K. Pearson.4
1https://en.wikipedia.org/wiki/Exploratory_data_analysis
2https://www.itl.nist.gov/div898/handbook/
3Roger Peng, Exploratory Data Analysis with R, https://leanpub.com/exdata, 2016
4Ronald Pearson, Exploratory Data Analysis Using R, CRC Press, ISBN:9781138480605, 2018
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Questions During EDA

Although exploratory data analysis does not always have a formal hypothesis testing portion, I do, however,
pose several questions concerning the structure, quality, and types of data.

1. Do the independent variables of this study have large skewed distributions?
1.1 If skews are greater than 2.0, then can a transformation be used for normalization?
1.2 Determine what transformation to use?

2. Can Feature Selection be used, and which procedures are appropriate?
2.1 Use the Random Forest technique known as Boruta5 for feature importance or reduction?
2.2 Will coefficients of correlation (R) find collinearity and reduce the number of features?
2.3 Will principal component analysis (PCA) be useful in finding hidden structures of patterns?
2.4 Can PCA be used successfully for Feature Selection?

3. What is the structure of the data?
3.1 Is the data representative of the entire experimental space?
3.2 Is missing data an issue?
3.3 Does the data have certain biases, either known or unknown?
3.4 What relationships do we expect from these variables?6

Analysis of RAW data

Raw data is considered: ./00-data/02-aac_dpc_values/c_m_RAW_AAC.csv

# Import libraries, NO "doMC",
library(easypackages)
libraries("knitr", "readr", "RColorBrewer", "corrplot", "Boruta", "kableExtra")

# Import RAW data
c_m_RAW_AAC <- read_csv("./00-data/02-aac_dpc_values/c_m_RAW_AAC.csv")
Class <- as.factor(c_m_RAW_AAC$Class)

Visually inspect RAW data files

1. Use the command-line interface followed by the command less.
2. Check for binary instead of ASCII and bad Unicode.

Inspect RAW dataframe structure, str()

## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 2340 obs. of 23 variables:
## $ Class : num 0 0 0 0 0 0 0 0 0 0 ...
## $ TotalAA: num 226 221 624 1014 699 ...
## $ PID : chr "C1" "C2" "C3" "C4" ...
## $ A : num 0.2655 0.2081 0.0433 0.0661 0.0644 ...
## $ C : num 0 0 0.00962 0.01381 0.03577 ...

5Miron Kursa, Witold Rudnicki, Feature Selection with the Boruta Package, DOI:10.18637/jss.v036.i11, 2010
6Ronald Pearson, Exploratory Data Analysis Using R, CRC Press, ISBN:9781138480605, 2018
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## $ D : num 0.00442 0.00452 0.04647 0.06114 0.02861 ...
## $ E : num 0.031 0.0271 0.0833 0.074 0.0472 ...
## $ F : num 0.00442 0.00452 0.02564 0.02959 0.06295 ...
## $ G : num 0.0708 0.0769 0.0817 0.07 0.0443 ...
## $ H : num 0 0 0.0176 0.0187 0.0157 ...
## $ I : num 0.00885 0.0181 0.03045 0.04734 0.0701 ...
## $ K : num 0.28761 0.27602 0.00962 0.12426 0.05579 ...
## $ L : num 0.0442 0.0452 0.0577 0.0888 0.1359 ...
## $ M : num 0.00442 0.00452 0.01442 0.02465 0.02289 ...
## $ N : num 0.0177 0.0136 0.0641 0.0355 0.0558 ...
## $ P : num 0.0841 0.0995 0.0449 0.0434 0.0472 ...
## $ Q : num 0.00442 0.00905 0.04327 0.03353 0.02861 ...
## $ R : num 0.0133 0.0181 0.1202 0.0325 0.0415 ...
## $ S : num 0.0575 0.0724 0.1875 0.0838 0.0787 ...
## $ T : num 0.0531 0.0633 0.0625 0.0414 0.0744 ...
## $ V : num 0.0442 0.0543 0.0385 0.0671 0.0458 ...
## $ W : num 0 0 0.00481 0.01282 0.00715 ...
## $ Y : num 0.00442 0.00452 0.01442 0.03156 0.0372 ...
## - attr(*, "spec")=
## .. cols(
## .. Class = col_double(),
## .. TotalAA = col_double(),
## .. PID = col_character(),
## .. A = col_double(),
## .. C = col_double(),
## .. D = col_double(),
## .. E = col_double(),
## .. F = col_double(),
## .. G = col_double(),
## .. H = col_double(),
## .. I = col_double(),
## .. K = col_double(),
## .. L = col_double(),
## .. M = col_double(),
## .. N = col_double(),
## .. P = col_double(),
## .. Q = col_double(),
## .. R = col_double(),
## .. S = col_double(),
## .. T = col_double(),
## .. V = col_double(),
## .. W = col_double(),
## .. Y = col_double()
## .. )

Check RAW data head & tail

head(c_m_RAW_AAC, n = 2)

## # A tibble: 2 x 23
## Class TotalAA PID A C D E F G H I
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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## 1 0 226 C1 0.265 0 0.00442 0.0310 0.00442 0.0708 0 0.00885
## 2 0 221 C2 0.208 0 0.00452 0.0271 0.00452 0.0769 0 0.0181
## # ... with 12 more variables: K <dbl>, L <dbl>, M <dbl>, N <dbl>, P <dbl>,
## # Q <dbl>, R <dbl>, S <dbl>, T <dbl>, V <dbl>, W <dbl>, Y <dbl>

tail(c_m_RAW_AAC, n = 2)

## # A tibble: 2 x 23
## Class TotalAA PID A C D E F G H I
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 335 M1123 0.0567 0.00299 0.0537 0.0716 0.0507 0.0507 0.0388 0.0776
## 2 1 43 M1124 0.0698 0 0.116 0.116 0.0930 0.0465 0 0.0233
## # ... with 12 more variables: K <dbl>, L <dbl>, M <dbl>, N <dbl>, P <dbl>,
## # Q <dbl>, R <dbl>, S <dbl>, T <dbl>, V <dbl>, W <dbl>, Y <dbl>

Check RAW data types

is.data.frame(c_m_RAW_AAC)

## [1] TRUE

class(c_m_RAW_AAC$Class) # Col 1

## [1] "numeric"

class(c_m_RAW_AAC$TotalAA) # Col 2

## [1] "numeric"

class(c_m_RAW_AAC$PID) # Col 3

## [1] "character"

class(c_m_RAW_AAC$A) # Col 4

## [1] "numeric"

Check RAW dataframe dimensions

dim(c_m_RAW_AAC)

## [1] 2340 23

Check RAW for missing values

• No missing values found.
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apply(is.na(c_m_RAW_AAC), 2, which)

## integer(0)

# sapply(c_m_RAW_AAC, function(x) sum(is.na(x))) # Sum up NA by columns
# c_m_RAW_AAC[rowSums(is.na(c_m_RAW_AAC)) != 0,] # Show rows where NA's is not zero

Number of polypeptides per Class:

• Class 0 = Control,
• Class 1 = Myoglobin

##
## 0 1
## 1216 1124

Numerical summary of RAW data

## Class TotalAA PID A
## Min. :0.0000 Min. : 2.0 Length:2340 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.: 109.8 Class :character 1st Qu.:0.05108
## Median :0.0000 Median : 154.0 Mode :character Median :0.07364
## Mean :0.4803 Mean : 353.8 Mean :0.07835
## 3rd Qu.:1.0000 3rd Qu.: 407.0 3rd Qu.:0.10261
## Max. :1.0000 Max. :4660.0 Max. :0.28000
## C D E F
## Min. :0.000000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.000000 1st Qu.:0.03401 1st Qu.:0.05435 1st Qu.:0.03801
## Median :0.007034 Median :0.05195 Median :0.07143 Median :0.04545
## Mean :0.011970 Mean :0.04900 Mean :0.07451 Mean :0.05135
## 3rd Qu.:0.020408 3rd Qu.:0.06567 3rd Qu.:0.09091 3rd Qu.:0.05501
## Max. :0.159420 Max. :0.17647 Max. :0.50000 Max. :0.37500
## G H I K
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.04544 1st Qu.:0.01324 1st Qu.:0.04348 1st Qu.:0.05797
## Median :0.06394 Median :0.02297 Median :0.05992 Median :0.08182
## Mean :0.06193 Mean :0.02890 Mean :0.06839 Mean :0.08386
## 3rd Qu.:0.08625 3rd Qu.:0.04095 3rd Qu.:0.08216 3rd Qu.:0.12081
## Max. :0.36364 Max. :0.13333 Max. :0.50000 Max. :0.28761
## L M N P
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.07480 1st Qu.:0.01087 1st Qu.:0.01948 1st Qu.:0.02464
## Median :0.09136 Median :0.01948 Median :0.04145 Median :0.03401
## Mean :0.09313 Mean :0.01949 Mean :0.04228 Mean :0.03825
## 3rd Qu.:0.11688 3rd Qu.:0.02721 3rd Qu.:0.05788 3rd Qu.:0.04772
## Max. :0.25000 Max. :0.11111 Max. :0.12563 Max. :0.20635
## Q R S T
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.02212 1st Qu.:0.01476 1st Qu.:0.04348 1st Qu.:0.03247
## Median :0.03598 Median :0.03896 Median :0.05564 Median :0.05194
## Mean :0.03342 Mean :0.03818 Mean :0.06191 Mean :0.04838
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## 3rd Qu.:0.04545 3rd Qu.:0.05370 3rd Qu.:0.06964 3rd Qu.:0.06522
## Max. :0.18182 Max. :0.24324 Max. :0.22619 Max. :0.18750
## V W Y
## Min. :0.00000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.04575 1st Qu.:0.001899 1st Qu.:0.01463
## Median :0.05844 Median :0.011492 Median :0.02865
## Mean :0.06512 Mean :0.012327 Mean :0.03644
## 3rd Qu.:0.07405 3rd Qu.:0.017889 3rd Qu.:0.04564
## Max. :0.20000 Max. :0.133333 Max. :0.14286

Visualize Descriptive Statistics using RAW Data

Formulas for mean:
E[X] =

n∑
i=1

xipi ; x̄ = 1
n

n∑
i=1

xi (2)

Scatter plot of means of Myoglobin-Control amino acid composition of RAW Data

• This Scatter-plot shows the means for each feature (column-means) in the dataset. The means represent
the ungrouped or total of all proteins (where n = 2340) versus AA type.
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# A-4
### Grouped barchart of amino acid vs. protein category
barplot(percent_aa,

main = "Mean % A.A.Composition Of 3 Protein Groupings",
ylab = "% AA Composition",
ylim = c(0, 12),
col = colorRampPalette(brewer.pal(4, "Blues"))(3),
legend = T,
beside = T)
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Means of percent amino acid composition of control & myoglobin categories, RAW data
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Boxplots of grand-means of overall amino acid composition, RAW data

A D F H I K L N Q S V Y

0.0

0.1

0.2

0.3

0.4

0.5

Boxplots: All; % Composition Vs Amino Acid

Amino Acid

%
 A

A
C

8



Boxplots of amino acid compositions for control (only), RAW data
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Boxplots of amino acid compositions for myoglobin (only), RAW data
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Boxplots Of Length Of Polypeptides For RAW Data
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Plot Coefficient Of Variance For RAW Data

Standard deviations are sensitive to scale. Therefore I compare the normalized standard deviations. This
normalized standard deviation is more commonly called the coefficient of variation (CV).

CV = σ(x)
E[|x|] where σ(x) ≡

√
E[x− µ]2 (3)

CV = 1
x̄
·

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (4)
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 C=1.24

W=0.946

AA_var_norm

## A C D E F G H I
## 0.6095112 1.2444944 0.5478540 0.4156102 0.5436243 0.5201625 0.7966296 0.6005962
## K L M N P Q R S
## 0.4689544 0.3215591 0.6529752 0.7352478 0.7383244 0.5752622 0.7680977 0.4948690
## T V W Y
## 0.5830352 0.4420595 0.9461276 0.8461615

Skewness of distributions, RAW data

Skewness = E

[(
X − µ
σ(x)

)3
]

where σ(x) ≡
√
E[x− µ]2 (5)

Skewness =
1
n

∑n
i=1(xi − x̄)3(√

1
n−1

∑n
i=1(xi − x̄)2

)3 (6)

Skewness values for each A.A. are determined in totality.
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 C=2.5

F=2.1 I=2.2

AA_skewness

## A C D E F G
## 0.670502595 2.538162400 -0.058540442 1.782876260 2.128117638 0.091338300
## H I K L M N
## 1.135783661 2.192145038 0.223433207 -0.172566877 0.744002991 0.633532783
## P Q R S T V
## 1.493903282 0.306716333 1.241930812 1.448521897 -0.006075043 1.338971930
## W Y
## 1.831047440 1.694362388

Determine coefficients of correlation, RAW data

An easily interpretable test is a correlation 2D-plot for investigating multicollinearity or feature reduction.
Fewer attributes “means decreased computational time and complexity. Secondly, if two predictors are
highly correlated, this implies that they measure the same underlying information. Removing one should
not compromise the performance of the model and might lead to a more parsimonious and interpretable
model. Third, some models can be crippled by predictors with degenerate distributions.” 7

Pearson’s correlation coefficient:
ρx,y = E [(X − µx)(X − µy)]

σxσy
(7)

rxy =
∑n
i=1(xi − x̄)(y1 − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(8)

7Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018, P.43
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c_m_corr_mat <- cor(c_m_RAW_AAC[, c(2, 4:23)], method = "p") # "p": Pearson test for continous variables

corrplot(abs(c_m_corr_mat),
title = "Correlation Plot Of AAC, RAW Data",
method = "square",
type = "lower",
tl.pos = "d",
cl.lim = c(0, 1),
addgrid.col = "lightgrey",
cl.pos = "b", # Color legend position bottom.
order = "FPC", # "FPC" = first principal component order.
mar = c(1, 2, 1, 2),
tl.col = "black")
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Correlation Plot Of AAC, RAW Data

NOTE: Amino acids shown in First Principal Component order, top to bottom.

1. Maximum value of Correlation between T & N.

## [1] 0.7098085

2. According to Max Kuhn8, correlation coefficients need only be addressed if the |R| >= 0.75.
3. Therefore is no reason to consider multicollinearity.
8Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018, P.47 (http://

appliedpredictivemodeling.com/)
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Boruta Random Forest Test, RAW data

It finds relevant features by comparing original attributes’ importance with importance achievable
at random, estimated using their permuted copies (shadows).
Miron Kursa 9

c_m_class_20 <- c_m_RAW_AAC[, -c(2, 3)] # Remove TotalAA & PID
Class <- as.factor(c_m_class_20$Class) # Convert 'Class' To Factor

NOTE: mcAdj = TRUE, If True, multiple comparisons will be adjusted using the Bonferroni method to
calculate p-values. Therefore, pi ≤ α

m where α is the desired p-value and m is the total number of null
hypotheses.

set.seed(1000)
#registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

boruta_output <- Boruta(Class ~ .,
data = c_m_class_20[, -1],
mcAdj = TRUE, # See Note above.
doTrace = 1) # doTrace = 1, represents non-verbose mode.

#registerDoSEQ() # Stop multi-processor mode
end_time <- Sys.time() # End timer
end_time - start_time # Display elapsed time

## Time difference of 31.45118 secs

names(boruta_output)

9https://notabug.org/mbq/Boruta/
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Plot variable importance, RAW Data
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## Warning in TentativeRoughFix(boruta_output): There are no Tentative attributes!
## Returning original object.
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meanImp decision
R 43.18824 Confirmed
H 34.29757 Confirmed
P 28.70225 Confirmed
C 27.67710 Confirmed
K 27.60808 Confirmed
E 26.18884 Confirmed
Y 22.85337 Confirmed
T 21.67689 Confirmed
S 21.43716 Confirmed
A 20.53089 Confirmed
N 20.09681 Confirmed
V 18.77054 Confirmed
I 18.76492 Confirmed
F 18.31240 Confirmed
D 17.64592 Confirmed
G 16.15461 Confirmed
W 15.74107 Confirmed
L 15.27767 Confirmed
M 14.82861 Confirmed
Q 14.13939 Confirmed

Conclusion for Boruta random forest test, RAW Data

• All features are essential. None should be dropped.

Conclusions For EDA, RAW data

Three amino acids (C, F, I) from the single amino acid percent composition were deemed problematic due
to their skewness were greater than 2.0. This suggests that a transformation should be carried out to rectify
this issue.

Protein Skewness
C, Cysteine 2.538162
F, Phenolalanine 2.128118
I, Isoleucine 2.192145

Analysis of TRANSFORMED data

This EDA section is a reevaluation square root transformed, c_m_RAW_ACC.csv data set, hence
called c_m_TRANSFORMED.csv.

The
√
xi Transformed data is derived from c_m_RAW_ACC.csv where the amino acids C, F, I were transformed

using a square root function. This transformation was done to reduce the skewness of these samples and
avoid modeling problems arising from high skewness, as seen below.
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Amino Acid Initial skewness Skew After Square-Root Transformation
C, Cysteine 2.538162 0.3478132
F, Phenolalanine 2.128118 -0.102739
I, Isoleucine 2.192145 0.2934749

# Import Transformed data
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv")
Class <- as.factor(c_m_TRANSFORMED$Class)

Check Transformed dataframe dimensions

dim(c_m_TRANSFORMED)

## [1] 2340 23

Check Transformed for missing values

apply(is.na(c_m_TRANSFORMED), 2, which)

## integer(0)

• No missing values found.

Count Transformed data for the number of polypeptides per class

Number of polypeptides per Class:

• Class 0 = Control,
• Class 1 = Myoglobin

##
## 0 1
## 1216 1124

Visualization Descriptive Statistics, TRANSFORMED data

Formulas for mean:
E[X] =

n∑
i=1

xipi ; x̄ = 1
n

n∑
i=1

xi (9)
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Scatter plot of means of Myoglobin-Control amino acid composition
√
xi, TRANSFORMED

data

• This plot shows the means for each feature (column-means) in the dataset. The means represent the
ungrouped or total of all proteins (where n=2340) versus AA type.
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# A-4
## Grouped barchart of $\sqrt x_i$ Transformed amino acid vs.
## protein category data
barplot(percent_aa,

main = "Mean % A.A.Composition, TRANSFORMED data",
ylab = "% AA Composition",
ylim = c(0, 30),
col = colorRampPalette(brewer.pal(4, "Blues"))(3),
legend = T,
beside = T)
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Grouped bar chart of means for percent amino acid composition of Transformed Data; control
& myoglobin categories

A D F H I K L N Q S T V Y
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Boxplots of grand-means of the overall amino acid composition of square-root transformed
data
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Boxplots of amino acid compositions for control (only) of square-root transformed data
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Boxplots of amino acid compositions for myoglobin of square-root transformed Data(only),
TRANSFORMED data

A D F H I K L N Q S V Y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Myoglobin, % AAC Vs Amino Acid, TRANSFORMED data

Amino Acid

%
 A

A
C

24



Boxplots Of Length Of Polypeptides Of Transformed Data; Myoglobin, Control & Combined
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Coefficient of Variance (CV), TRANSFORMED data

Standard deviations are sensitive to scale. Therefore I compare the normalized standard deviations. This
normalized standard deviation is more commonly called the coefficient of variation (CV).

CV = σ(x)
E[|x|] where σ(x) ≡

√
E[x− µ]2 (10)

CV = 1
x̄
·

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (11)
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Plot of Coefficient Of Variance (CV)
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AA_var_norm

## A C D E F G H I
## 0.6095112 0.8729758 0.5478540 0.4156102 0.2815745 0.5201625 0.7966296 0.2999687
## K L M N P Q R S
## 0.4689544 0.3215591 0.6529752 0.7352478 0.7383244 0.5752622 0.7680977 0.4948690
## T V W Y
## 0.5830352 0.4420595 0.9461276 0.8461615

Skewness of distributions, TRANSFORMED data

Skewness = E

[(
X − µ
σ(x)

)3
]

where σ(x) ≡
√
E[x− µ]2 (12)

Skewness =
1
n

∑n
i=1(xi − x̄)3(√

1
n−1

∑n
i=1(xi − x̄)2

)3 (13)

• Skewness values for each A.A. by Class of square-root transformed data
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AA_skewness

## A C D E F G
## 0.670502595 0.347813248 -0.058540442 1.782876260 -0.102739748 0.091338300
## H I K L M N
## 1.135783661 0.293474879 0.223433207 -0.172566877 0.744002991 0.633532783
## P Q R S T V
## 1.493903282 0.306716333 1.241930812 1.448521897 -0.006075043 1.338971930
## W Y
## 1.831047440 1.694362388

Determine coefficients of correlation, TRANSFORMED data

An easily interpretable test is a correlation 2D-plot for investigating multicollinearity or feature reduction.
Fewer attributes “means decreased computational time and complexity. Secondly, if two predictors are
highly correlated, this implies that they measure the same underlying information. Removing one should
not compromise the performance of the model and might lead to a more parsimonious and interpretable
model. Third, some models can be crippled by predictors with degenerate distributions.” 10

Pearson’s correlation coefficient:
ρx,y = E [(X − µx)(X − µy)]

σxσy
(14)

rxy =
∑n
i=1(xi − x̄)(y1 − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(15)

10Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018
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Correlation Plot, TRANSFORMED data

c_m_corr_mat["T", "N"]

## [1] 0.7098085

No values in the correlation matrix meet the 0.75 cut off criteria for problems.

Boruta - Dimensionality Reduction, TRANSFORMED data

Perform Boruta search

NOTE: mcAdj = TRUE : If True, multiple comparisons will be adjusted using the Bonferroni method to
calculate p-values. Therefore, pi ≤ α

m where α is the desired p-value and m is the total number of null
hypotheses.

set.seed(1000)
#registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

boruta_output <- Boruta(Class ~ .,
data = c_m_class_20[, -1],
mcAdj = TRUE, # See Note above.
doTrace = 1) # doTrace = 1, represents non-verbose mode.

## After 11 iterations, +32 secs:
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## confirmed 20 attributes: A, C, D, E, F and 15 more;

## no more attributes left.

#registerDoSEQ() # Stop multi-processor mode
end_time <- Sys.time() # End timer
end_time - start_time # Display elapsed time

## Time difference of 31.72578 secs

Plot Variable Importance, TRANSFORMED data

plot(boruta_output,
cex.axis = 1,
las = 2,
ylim = c(-5, 50),
main = "Variable Importance, TRANSFORMED data(Bigger=Better)")
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roughFixMod <- TentativeRoughFix(boruta_output)

## Warning in TentativeRoughFix(boruta_output): There are no Tentative attributes!
## Returning original object.

imps <- attStats(roughFixMod)
imps2 <- imps[imps$decision != "Rejected", c("meanImp", "decision")]
meanImps <- imps2[order(-imps2$meanImp), ] # descending sort

kable(meanImps) %>% kable_styling(bootstrap_options = c("striped", "hover"))

meanImp decision
R 43.17613 Confirmed
H 34.30370 Confirmed
P 28.70674 Confirmed
C 27.72357 Confirmed
K 27.60838 Confirmed
E 26.18872 Confirmed
Y 22.84975 Confirmed
T 21.66359 Confirmed
S 21.44119 Confirmed
A 20.54316 Confirmed
N 20.10100 Confirmed
V 18.77068 Confirmed
I 18.69155 Confirmed
F 18.18632 Confirmed
D 17.64435 Confirmed
G 16.15207 Confirmed
W 15.77085 Confirmed
L 15.27614 Confirmed
M 14.83421 Confirmed
Q 14.12976 Confirmed

# knitr::kable(meanImps,
# full_width = F,
# position = "left",
# caption = "Mean Importance Scores & Decision, TRANSFORMED data")

The Boruta Random Rorest test shows that all features are essential therefore none should be dropped from
TRANSFORMED data.

EDA Conclusion

Feature Selection & Extraction

It was determined early on that three amino acids (C, F, I) from the data amino acid percent compositions
(c_m_RAW_AAC.csv) had Skewness greater than two. It was found that tranforming the features using
the square root function lowered the skewness to {-0.102739 ≤ skew after transformation ≤ 0.3478132}.
Table 7.1, Skewness Before And After Square-Root Transform
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Amino Acid Initial Skewness Skew After Square-Root Transform
C, Cysteine 2.538162 0.347813248
F, Phenolalanine 2.128118 -0.102739748
I, Isoleucine 2.192145 0.293474879

The transformations of the three amino acids (C, F, I) did not appriciably change the Correlation coefficient,
R. Therefore no R values were above 0.75 before or after testing. The highest coeffiecient of correlation being
Threonine and Argnine with an R of 0.7098. This indicates that no features are collinear. Therefore the
transformed data is used throughout this experiment.

Information Block**

How to: Dimension Reduction using High Correlation

How to reduce features given high correlation (|R| >= 0.75) {-}

1. Calculate the correlation matrix of the predictors.

2. If the correlation plot produced of any two variables is greater than or equal to (|R| >= 0.75), then we
could consider feature elimination. This interesting heuristic approach would be used for determining
which feature to eliminate.11

3. Determine if the two predictors associated with the most significant absolute pairwise correlation (R
> |0.75|), call them predictors A and B.

4. Determine the average correlation between A and the other variables. Do the same for predictor B.

5. If A has a more significant average correlation, remove it; otherwise, remove predictor B.

6. Repeat Steps 2–4 until no absolute correlations are above the threshold.

An alternative test for variable importance carried out is called Boruta. Boruta builds Random Forests
then “finds relevant features by comparing original attributes’ importance with importance achievable at
random.” 12

Boruta is used for dimensionality reduction of the c_m_Transformed data. Bortua showed that all
dependent features are essential for the generation of a Random Forest Decision Tree. It would wise to keep
all features for that model test and throughout the generation of other models. All features have decisive
mean importance, which is generated by a Gini calculation.

11Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018, (http://appliedpredictivemodeling.
com/)

12https://notabug.org/mbq/Boruta/
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Principle Component Analysis of A Binary Classification System

Introduction

This chapter describes the use and functional understanding of Principle Component Analysis (PCA). PCA
is very popular and commonly used during the early phases of model development to provide information on
variance. In particular, PCA is a transformative process that orders and maximizes variances found within
a dataset.

The primary goal of principal components analysis is to reveal the hidden structure in a dataset.
In so doing, we may be able to; 1

1. identify how different variables work together to create the dynamics of the system,
2. reduce the dimensionality of the data,
3. decrease redundancy in the data,
4. filter some of the noise in the data,
5. compress the data,
6. prepare the data for further analysis using other techniques.

Advantages Of Using PCA Include

1. PCA preserves the global structure among the data points,

2. It is efficiently applied to large data sets,

3. PCA may provide information on the importance of features found in the original datasets.

Disadvantages Of PCA Should Be Considered

1. PCA can easily suffer from scale complications,

2. Similarly to the point above, PCA is susceptible to significant outliers. If the number of samples is small
or when values have many potential outliers, this can influence scaling and relative point placement,

3. Intuitive understanding can be tricky.
1Emily Mankin, Principal Components Analysis: A How-To Manual for R, http://people.tamu.edu/~alawing/materials/

ESSM689/pca.pdf
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Data centering / scaling / normalization

It is common for the first step when carrying out a PCA is to center, scale, normalize the data. This is
important due the fact that PCA is sensitive to the scale of the features. If the features are quite different
frome each other, i.e. different by one or more orders of magnitude then scaling is crucial.

While determining the variance of your dataset, it should be clear that the order of magnitude of your data
features matters significantly. The reasons for this should be clear that if one axis is in 1,000’s while the
second axis is between 1 and 10, the larger scale will have a higher variance distorting the results.
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What do the center and scale arguments do in the prcomp command?

There are four common methods for scaling data:

Method Formula
Centering f(x) = x− x̄

Scaling [0, 1] f(x) = x−min(x)
max(x)−min(x)

Scaling [a, b] f(x) = (b− a) ∗ x−min(x)
max(x)−min(x) + a

Normalizing f(x) = x−mean(x)
σx

Histograms of Scaled Vs. Unscaled data

Investigating the differences between the amino acid Phenylalanine (F) before and after 2 scaling methods.

Unscaled Data
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Normalized Data
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Investigating the plots above, the main idea to recognize is that the data has not been fundamentally changed,
simply ‘shifted and stretched’ or more accurately transformed. It appears that any visible changes of the
distributions can be accounted for by differing binnings.

Although the differences are between all three histograms are minor, any transformation would be sufficient
to use. However, I chose to use the Normalized dataset.
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Finding the Covariance Matrix

The first step for calculating PCA is to determine the Covariance matrix. Covariance provides a measure of
how strongly variables change together.2 3

Covariance of two variables

Remember, this simplified formula is to determine covariance for a two-dimensional system.

cov(x, y) = 1
N

N∑
i=1

(xi − x̄)(yi − ȳ) (1)

Where N is the number of observations, x̄ is the mean of the independent variable, ȳ is the mean of the
dependent variable.

Covariance of matrices

When dealing with a many feature variables one needs to determine the covariance of matrices, M using
linear algebra. 4

1. Find the column means of the matrix, Mmeans.
2. Find the difference matrix, D = M −Mmeans.
3. Finally calculate the covariance matrix:

cov (M) =
(

1
N − 1

)
DT ·D, where D = M −Mmeans (2)

Where DT is the transpose of the difference matrix, N is the number of observations or rows in this case.

Finding PCA via singular value decomposition

The procedure below is an outline, not the full computation of PCA.
This procedure for PCA relies on the fact that it is similar to the singular value decomposition (SVD) used
when determining eigenvectors and eigenvalues. 5

Singular value decomposition says that every n x p matrix can be written as the product of three
matrices: A = UΣV T where:

1. U is an orthogonal n x n matrix.
2. Σ is a diagonal n x p matrix. In practice, the diagonal elements are ordered so that

Σii = Σjj for all i < j.
3. V is an orthogonal p x p matrix, and V T represents a matrix transpose.

The SVD represents the essential geometry of a linear transformation. It tells us that every linear
transformation is a composition of three fundamental actions. Reading the equation from right
to left:

2http://mathworld.wolfram.com/Covariance.html
3Trevor Hastie, Robert Tibshirani, Jerome Friedman, ‘The Elements of Statistical Learning; Data Mining, Inference, and

Prediction,’ Second Edition, Springer, DOI:10.1007/978-0-387-84858-7, 2009
4http://mathworld.wolfram.com/Covariance.html
5https://blogs.sas.com/content/iml/2017/08/28/singular-value-decomposition-svd-sas.html

4
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1. The matrix V represents a rotation or reflection of vectors in the p-dimensional domain.
2. The matrix Σ represents a linear dilation or contraction along each of the p coordinate

directions. If n 6= p, this step also canonically embeds (or projects) the p-dimensional
domain into (or onto) the n-dimensional range.

3. The matrix U represents a rotation or reflection of vectors in the n-dimensional range.

The intuition for understanding PCA is reasonably straightforward. Consider the 2-dimensional data cloud
of points or observations in a hypothetical experiment, as seen in the figure on the left. Variances along
both the x and y dimensions are calculated. However, given the data shown, there is a rotation of that
x-y plane, which will present the data showing its most significant variance. This variance will reside on
an axis analogous to points on an Ordinary Least Squares (OLS) line. This axis is called the first principle
component followed by the second principal component and so on.

Unlike an OLS calculation, PCA will determine not only the first and most significant variance of your
data set, but it will, through the rotation and transform your dataset via linear algebra, calculating N
variances within your dataset, where N is equal to the number of features in the dataset. The second
principal component will be calculated only along a coordinate axis, which is perpendicular (orthogonal or
orthonormal) to the first. Each subsequent principal component will then be calculated along axes which
are orthogonal to each other. A further benefit of using PCA is that the variances it reports will be ranked
in order from highest to lowest. 6

Example of two-dimensional PCA using random data
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6Brian Everitt, Torsten Hothorn, An Introduction to Applied Multivariate Analysis with R, Springer, DOI:10.1007/978-1-
4419-9650-3, 2011
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Graphic Range (Green lines) Differences
Raw Data (Left) 1 <= x <= 4 3 units
Transformed Data (Right) -2.45 <= x <= 2.77 5.22 units

If we investigate the figures above we find that the range of the samples is (1 <= x <= 4), while the range for
the transformed data is (-2.45 <= x <= 2.76). The differences between the two ranges are 3 and 5.21 units,
respectively. The rotation should be no surprise since the PCA is essentially a maximization of variance.

Many R-packages will carry out the steps for PCA all behind the ‘scenes’ but giving no greater understanding
for beginners. For example, stats::prcomp 7, stats::princomp 8 are most commonly used. However, there
are dozens of similar packages. A keyword search for PCA at R-cran 9 provides 78 matches, as of November
2019.

Principle component analysis using norm_c_m_20aa

start_time <- Sys.time() # Start timer

c_m_20_PCA <- prcomp(norm_c_m_20aa)

Sys.time() - start_time # End timer & display time difference

## Time difference of 0.02079487 secs

Screeplot & Cumulative Proportion of Variance plot

Two plots are commonly used to determine the number of principal components that a researcher would
generally accept as useful. The eigenvalues derived from PCA are proportional to the variances which they
represent, and depending on the strategy used to calculate them, the eigenvalues are equal to the variances
of the components.

The first of the two plots which I which is the scree plot. 10 The scree plot is a ranked list of the eigenvalues
plotted against its principal components. An eigenvalue score of one is thought to provide a comparable
amount of information as a single variable un-transformed by PCA.

The second plot describes the cumulative proportion of variance versus the principal component. This graphic
shows how much each principal component represents the entire cumulative variances or total squared error.

Cumlative Proportion of V ariance = σ2
i∑N

i=1 σ
2
i

(3)

Here again, there are several criteria regarding how best to use the information from the is plot. The first
of which is Cattell’s heuristic. Cattell advises using the principal component that is above the elbow of
the curve. The second heuristic is keeping the total number of factors that best explains 80%-95% of the
variance. There is no hard-fast rule at this time; a set of researchers only uses the first three factors or

7https://stat.ethz.ch/R-manual/R-devel/library/stats/html/prcomp.html
8https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
9https://cran.r-project.org/web/packages/available_packages_by_name.html

10Raymond Cattell, “The scree test for the number of factors.” Multivariate Behavioral Research. 1 (2): 245–76. DOI:
10.1207/s15327906mbr0102_10, 1966
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none at all.11 A second suggestion is to use the Kaiser rule, which states it is sufficient to use Principal
Components, which have an eigenvalue greater than or equal to one. 12

Screeplot of c_m_20_PCA
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11Nicole Radzill, Ph.D., personal communication.
12https://stats.stackexchange.com/questions/253535/the-advantages-and-disadvantages-of-using-kaiser-rule-to-select-the-

number-of-pr
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If we investigate the ‘cumulative proportion of variance’ plot, we see an arbitrary line on the Y-axis, which
denotes the 90% mark. At this point, the plot suggests that a researcher could use the most significant 12
of the variances from the PCA.

Biplots

Biplot 1: PC1 Vs. PC2 with ‘Class’ by color labels

• Black indicates control protein set, Class = 0

• Blue indicates myoglobin protein set, Class = 1

The first two principal components describe 46.95% of the variance.

Biplot 2: Determination Of 4 Rule Set For Outliers
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Obtain Anomalous Points From Biplot #2: PC1 Vs. PC2

Anomalous data points are data that is greater than the absolute value of 3 sigma, Anomalous Point > |3σ|.

I have chosen to analyze the PCA biplot of the first and second principal components. The first and second
components were used because they describe nearly 50% of the variance (46.95%).

Outliers from Principal Component-1

Rule Set Given PC1:

1. Outlier_1: c_m_20_PCA$x[, 1] > 3 standard deviations

2. Outlier_2: c_m_20_PCA$x[, 1] < -3 standard deviations

9



outliers_PC1 <- which((c_m_20_PCA$x[, 1] > 3) | (c_m_20_PCA$x[, 1] < -3))
length(outliers_PC1)

## [1] 285

Outliers from Principal Component-2

Rule Set Given PC2:

3. Outlier_3: c_m_20_PCA$x[, 2] > 3 standard deviations

4. Outlier_4: c_m_20_PCA$x[, 2] < -3 standard deviations

outliers_PC2 <- which((c_m_20_PCA$x[, 2] > 3) | (c_m_20_PCA$x[, 2] < -3))
length(outliers_PC2)

## [1] 177

List of all outliers (union and sorted) found using the ruleset 1 through 4

• The list of total outliers is derived by taking the union of outliers_PC1 and outliers_PC2 and then
using sort.

total_pca_1_2_outliers <- union(outliers_PC1, outliers_PC2)
total_pca_1_2_outliers <- sort(total_pca_1_2_outliers)

length(total_pca_1_2_outliers)

## [1] 461

# Write out to Outliers folder
write.table(total_pca_1_2_outliers,
file = "./00-data/03-ml_results/pca_outliers.csv",
row.names = FALSE,
na = "",
col.names = "rowNum",
sep = ",")

It is important to remember and understand that this list of “total_pca_1_2_outliers” includes BOTH
negative and positive controls. The groupings are as follows:

Group Range of Groups
Controls 1, . . . , 1216
Positive (Myoglobin) 1217, . . . , 2341
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PCA Conclusion

Principal Component Analysis is very popular and an excellent choice to include during Exploratory Data.
Analysis. One objective for using PCA is to filter noise from the dataset used and, in turn, increase any
signal or to sufficiently delineate observations from each other. In fact, in the figure below, there are five
colored groups outside the main body of observations that are marked at ‘outliers.’ The number of outliers
obtained from PCA is 461 proteins. The premise of this experiment is to determine if PCA is an excellent
representative measure for proteins that are categorized is false-positive, and false-negatives in the five
subsequent machine learning model approach. It will be interesting to see if anyone of these groups will be
present in the group of false-positives and false-negatives in any of the machine learning models.

Outliers derived from PC1 Vs PC2

The table and the figure below show a subset of outliers produced when the first and second principal
component is graphed. My interest lies in finding if any one of the lettered groups (A-E) are part of the
false-positives and false-negatives from each of the machine learning models. Each of the five groups is rich is
a small number of amino acids. We hope that this information will shine a light on how the different machine
models work. It is also expected that this will give help in constructing a model that is more interpretable for
the more difficult opaque machine learning models, such as Random Forest, Neural Networks, and possibly
Support Vector Machine using the Radial Basis Function.

Group Increased concentration of amino acid Example observations
A H, L, K 1478
B E, K 1934, 1870, 2100
C V, I, F, Y 182, 1752, 2156
D C, S 1360, 2240
E G, D, Q 664, 2304

11
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Logistic Regression For Binary Classification

Introduction

For individuals who have studied cell biology or biochemistry, logistic regression may be familiar as dose-
response curves, enzyme kinetic curves, sigmoidal curves, median lethal dose curve (LD-50) or even an
exponential growth curve given limited resources.

However, in the context of predictive modeling, Logistic Regression is used as a binary classifier that toggle
between the logical values of zero or one.

Logistic regression (Logit) derives its name from its similarity to linear regression, as we shall see below. The
input/independent variable for Logit is the set of real numbers, (X ∈ <). While, the output of a Logistic
Regression is not represented by {0, 1}, (Y /∈ <),

f(x) =
{

0 for x < 0
1 for x ≥ 0 (1)

Using Logistic Regression, we may calculate the presence or absence of a product or quality that we wish to
model given a difficult situation where the transition is not clear.

In the figure below, the function’s domain, X ∈ {−∞ to ∞}, whereby its range is {0, 1}. In the figure, the
decision boundary is x = 0, denoted by the red dotted line. At the inflection point the curves range changes
from zero, absence, to one, the presence of quality or item.

1
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The logistic growth curve is commonly denoted by:

f(x) = M

1 +Ae−r(x−x0) (2)

whereM is the curve’s maximum value, r is the maximum growth rate (also called the Malthusian parameter
1), x0 is the midpoint of the curve, A is the number of times that the initial population must double to reach
M .2

In the specific case of Logistic Regression for Binary Classification where we have a probability between 0
and 1, M , and A take on the value one.

f(x) = 1
1 + e−(W X+b) (3)

Since the logistic equation is exponential, it is easier to work with the formula in terms of its odds or log-odds.
Odds are the probabilities of success over failure denoted as p

1−p and more importantly, in this situation,
log-odds are ln

(
p

1−p

)
.

Simply by using log-odds, logistic regression may be more easily expressed as a set of linear equations in x.3
Hence we can now go from linear regression to logistic regression.

Step #1:
ln

(
Pr(yi = 1|xi)
Pr(yi = 0|xi)

)
= β0 + β1x1 + ... + βnxn (4)

Step #2: Substitute (p for Pr(yi = 1|xi)) and (1−p for Pr(yi = 0|xi)) and change notation to summation
on the right hand side;

1https://en.wikipedia.org/wiki/Malthusian_growth_model
2https://en.wikipedia.org/wiki/Logistic_function
3http://juangabrielgomila.com/en/logistic-regression-derivation/
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ln

(
p

1− p

)
=

k∑
i

βixi (5)

Step #3: Eliminate the natural log by taking the exponent on both sides;

p

1− p = exp

(
k∑
i

βixi

)
(6)

Step #4: Substitute u =
∑k

i βixi;

p

1− p = eu (7)

Step #5: Rearrange to solve for p;

p(u) = eu

1 + eu
(8)

Step #6: Incidentally, to find the probabilities, take the derivative of both sides using quotient rule;

p′(u) = (eu)(1 + eu)− (eu)(eu)
(1 + eu)2 (9)

Step #7: Simplify;

p′(u) = eu

(1 + eu)2 (10)

Step #8: Separate out to produce two fractions;

p′(u) =
(

eu

1 + eu

)
·
(

1
1 + eu

)
(11)

Step #9: Substitute our previous success and failure variables back into place;

p′(u) = p(u) · (1− p(u)) (12)

Now we can calculate the probabilities as well as the values for any given x value.

Logit-20 Training Using 20 Features

# Load Libraries
Libraries <- c("doMC", "knitr", "readr", "tidyverse", "caret")
for (p in Libraries) {

library(p, character.only = TRUE)
}
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# Import relevant data
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",

col_types = cols(Class = col_factor(levels = c("0", "1")),
PID = col_skip(),
TotalAA = col_skip()))

# Partition data into training and testing sets
set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)
training_set.1 <- c_m_TRANSFORMED[index, ]

• The test.set.1 and Class.test data sets are not produced since the Logit run with 20 features was
not deemed useful. The reason for its dismissal was that is contained extraneous features.

• The first training run is to determine if all 20 features (amino acids) are necessary for our logistic
regression model.

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

# Create model, 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",

number = 10,
repeats = 5)

model_obj.1 <- train(Class ~ .,
data = training_set.1,
trControl = tcontrol,
method = "glm",
family = "binomial")

end_time <- Sys.time() # End timer
end_time - start_time # Display time

## Time difference of 3.231281 secs

registerDoSEQ() # Stop multi-processor mode

Logit-20 Summary #1

summary(model_obj.1)

##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
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## -5.9372 -0.2835 -0.0194 0.0516 3.6884
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.0525 9.2156 0.874 0.382234
## A 5.0438 9.6899 0.521 0.602699
## C -14.2228 2.6949 -5.278 1.31e-07 ***
## D -36.2676 8.0845 -4.486 7.25e-06 ***
## E 27.6016 11.1292 2.480 0.013135 *
## F 5.6174 5.2654 1.067 0.286034
## G -22.1970 10.3043 -2.154 0.031229 *
## H 90.1101 12.1105 7.441 1.00e-13 ***
## I -5.9795 4.3945 -1.361 0.173610
## K -2.8961 9.8468 -0.294 0.768669
## L -3.7417 9.2217 -0.406 0.684926
## M -0.1427 12.0747 -0.012 0.990570
## N 3.3478 9.6749 0.346 0.729319
## P -39.7466 11.1010 -3.580 0.000343 ***
## Q -5.6804 11.2516 -0.505 0.613664
## R -83.6045 11.8104 -7.079 1.45e-12 ***
## S -9.9745 10.0872 -0.989 0.322750
## T -36.5980 9.2791 -3.944 8.01e-05 ***
## V 16.3411 9.7859 1.670 0.094946 .
## W 9.0169 13.8870 0.649 0.516141
## Y -31.9282 11.1167 -2.872 0.004078 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2593.68 on 1872 degrees of freedom
## Residual deviance: 657.72 on 1852 degrees of freedom
## AIC: 699.72
##
## Number of Fisher Scoring iterations: 8

The Akaike information criterion (AIC)4 for model #1 is 699.72. This will be used later to compare the
models generated to rate their ability to utilize the features best. - The list of probabilities for the estimates
leaves us with only 9 important features to try re-modeling, R, H, P, C, E, Y, T, D, G.

Logit-9 Training Using 9 Features

• This test uses ONLY 9 features: (R, H, P, C, E, Y, T, D, G)

# Data import & handling
c_m_9aa <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",

col_types = cols(Class = col_factor(levels = c("0", "1")),
A = col_skip(), F = col_skip(),
I = col_skip(), K = col_skip(),
L = col_skip(), M = col_skip(),
N = col_skip(), PID = col_skip(),

4https://en.wikipedia.org/wiki/Akaike_information_criterion
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Q = col_skip(), V = col_skip(),
S = col_skip(), TotalAA = col_skip(),
W = col_skip()))

# Partition data into training and testing sets
set.seed(1000)
index <- createDataPartition(c_m_9aa$Class, p = 0.8, list = FALSE)

training_set.2 <- c_m_9aa[ index, ]
test_set.2 <- c_m_9aa[-index, ]

Class_test.2 <- as.factor(test_set.2$Class)

set.seed(1000)
registerDoMC(cores = 3) # Start multi-core
start_time <- Sys.time() # Start timer

# Create model, 10X fold CV repeated 5X
fitControl <- trainControl(method = "repeatedcv",

number = 10,
repeats = 5,
savePredictions = "final") # IMPORTANT: Saves predictions

model_obj.2 <- train(Class ~ .,
data = training_set.2,
trControl = fitControl,
method = "glm",
family = "binomial")

end_time <- Sys.time() # End timer
end_time - start_time # Display time

## Time difference of 2.613658 secs

registerDoSEQ() # Stop multi-core
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Logit-9 Summary

summary(model_obj.2)

##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.2083 -0.2984 -0.0204 0.0601 3.5666
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.306 1.007 8.245 < 2e-16 ***
## C -14.755 1.908 -7.733 1.05e-14 ***
## D -31.411 4.949 -6.347 2.20e-10 ***
## E 21.932 5.092 4.307 1.66e-05 ***
## G -23.259 5.071 -4.587 4.49e-06 ***
## H 94.580 8.431 11.218 < 2e-16 ***
## P -29.394 6.264 -4.692 2.70e-06 ***
## R -82.809 6.363 -13.015 < 2e-16 ***
## T -40.915 5.624 -7.275 3.45e-13 ***
## Y -37.860 6.291 -6.018 1.77e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2593.68 on 1872 degrees of freedom
## Residual deviance: 688.96 on 1863 degrees of freedom
## AIC: 708.96
##
## Number of Fisher Scoring iterations: 8
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Logit-9 Confusion Matrix

Predicted_test_vals <- predict(model_obj.2, test_set.2[, -1])

confusionMatrix(Predicted_test_vals, Class_test.2, positive = "1")

## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 235 18
## 1 8 206
##
## Accuracy : 0.9443
## 95% CI : (0.9195, 0.9633)
## No Information Rate : 0.5203
## P-Value [Acc > NIR] : < 2e-16
##
## Kappa : 0.8883
##
## Mcnemar's Test P-Value : 0.07756
##
## Sensitivity : 0.9196
## Specificity : 0.9671
## Pos Pred Value : 0.9626
## Neg Pred Value : 0.9289
## Prevalence : 0.4797
## Detection Rate : 0.4411
## Detection Prevalence : 0.4582
## Balanced Accuracy : 0.9434
##
## 'Positive' Class : 1
##

• The Akaike information criterion (AIC) for model #2 is 708.96. This will be used later to compare
the models generated to rate their ability to utilize the features best.

• The number of unique false-positives and false-negatives is 26.

Obtain List of False Positives & False Negatives From Logit-9

fp_fn_logit <- model_obj.2 %>% pluck("pred") %>% dplyr::filter(obs != pred)

# Write CSV in R
write.table(fp_fn_logit,

file = "./00-data/03-ml_results/fp_fn_logit.csv",
row.names = FALSE,
na = "",
col.names = TRUE,
sep = ",")

nrow(fp_fn_logit) ## NOTE: NOT UNIQUE NOR SORTED
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## [1] 536

• The logistic regression second test produced 536 protein samples, which are either false-positives or
false-negatives. The list of 536 proteins may have duplicates. Therefore they are NOT UNIQUE NOR
SORTED.

Logit Conclusion

Logit is easy to implement and understand and can be used for feature selection.

Considering the table Logit Models, below, it is clear that model #2 with nine features best describes the
better of the two models.

Akaike Information Criterion 5

AIC = 2K − 2ln(L̂) (13)

Where ln(L̂) is the log-likelihood estimate, K is the number of parameters.

Two Logit Models

Model # Features AIC
1 20 699.72
2 9 708.96

Logit is a common machine learning method. It is easy to understand and explain. This supervised binary
classification method is very useful for determining the importance of the features which can be applied.
As we saw in Model#1, there were 11 features that had probabilities of the estimates used above the 5%
threshold cut-off. In Model#2, only nine features were used to describe the model, and the AIC increased
by 9.24.

The nine features which best described the logistic regression model were R, H, P, C, E, Y, T, D, G. If we
compare this to the Boruta test carried out in the EDA, we find the overlap interesting.

Comparison of Boruta Vs Logit: Order of Importance

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Boruta R H P K C E Y T S A V U I F D G N L M Q
Logit-9 R H P . C E Y T . . . . . . D G . . . .

The first 7 out of 8 amino acid features are seen in the proper order, as described by the Boruta Random
Forest model. This is confirmation that Logit can pick up the importance of features similar to Boruta.

Logit produced 536 proteins, which are false-negatives or false-positives. It should be noted that the 536
are NOT UNIQUE NOR SORTED. The number of unique FN/FP from the confusion matrix is 26. These
proteins will be investigated further in the Outliers chapter, which compares these FN/FP proteins to the
PCA outliers.

The two tests for Logit (using 20 then 9 features) is interesting. This shows that Logit is an alternatvie way
5https://en.wikipedia.org/wiki/Akaike_information_criterion
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of choosing the importance of features. As can be seen in the table “Comparison of Boruta Vs Logit: Order
of Importance” it was seen that the first seven features lined up very closely with the Boruta Random Forest
feature order of importance.
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Neural Networks For Binary Classification
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Neural Networks For Binary Classification

“Machine learning is essentially a form of applied statistics with increased emphasis on the use of
computers to statistically estimate complicated functions and a decreased emphasis on proving
confidence intervals around these functions”
– Ian Goodfellow, et al1

Introduction

If we discuss Neural Networks (NN), we should first consider the system we hope to emulate. Let us start
with a simple count of neuronal cells in various organisms along the earth’s phylogenetic tree. We might get
a better idea of the type of “computing power” these living creatures possess. See table 6.1.

Table 6.1: Organisms Vs Number of Neurons In Each (Wikipedia)

Organism Common Name Approximate Number of Neurons
C. elegans roundworm 302
Chrysaora fuscescens jellyfish 5,600
Apis linnaeus honey bee 960,000
Mus musculus mouse 71,000,000
Felis silvestris cat 760,000,000
Canis lupus familiaris dog 2,300,000,000
Homo sapien sapien humans 100,000,000,000

This table portrays a high-level overview of the computing power of neuronal clusters and brains produced
throughout evolution. However, there is one missing number worth noting. The table above does not describe
the connectivity between neurons. The connectivity of neurons varies greatly from lower to higher organisms.
For example, some simple animals, such as the roundworm, have only “four to eight separate branches,” 2

per nerve cell. While human neurons may have greater than 10,000 inter-connected synaptic junctions per
neuron, thus resulting in a total of approximately 600 trillion synapses per human brain.3

Although neurons have differing morphologies, neurons in the human brain are extremely diverse. Indeed,
size and shape may not be the definitive way of classifying neurons but instead by what neurotransmitters
the cells secrete. “Neurotransmitters can be classified as either excitatory or inhibitory.” 4 Currently

1Ian Goodfellow, Yoshua Bengio, Aaron Courville, ‘Deep Learning’, MIT Press, 2016, http://www.deeplearningbook.org
2https://www.wormatlas.org/hermaphrodite/nervous/Neuroframeset.html
3Shepherd, G. M. (2004), The synaptic organization of the brain (5th ed.), Oxford University Press, New York.
4https://www.kenhub.com/en/library/anatomy/neurotransmitters
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the NeuroPep database “holds 5949 non-redundant neuropeptide entries originating from 493 organisms
belonging to 65 neuropeptide families.” 5

5http://isyslab.info/NeuroPep/home.jsp
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Figure 1: Basic Neuron Types and S.E.M. Image

6

Figure 2: Two Neuron System (Image From The Public Domain)

Given an order of operation via:

Dendrite(s) =⇒ Cell body =⇒ Fibrous Axon =⇒ Synaptic Junction or Synaptic Gap =⇒ Dendrite(s) . . .
Ad infinitum.

However, nature is more subtle and intricate than to have neurons in a series, only blinking on and off, firing
or not. NN are often programmed to classify dangerous road objects, as is the case of Tesla cars. The goal of
a Tesla auto-piloted car is to use all available sensors to correctly classify all the conceivable circumstances
on the road. On the road, a Tesla automobile uses dozens of senors which the computer needs to evaluate
and weigh the values of all these sensors to formulate a ‘decision.’ The altitude of the auto, derived from
the GPS, may weigh less heavily than the speed of the vehicle or Lidar estimates on how close objects are.
However, our goal of safe driving can be thwarted when an artificial intelligence system decides a truck is a
sign and does not apply the brakes.7

6https://www.howstuffworks.com/
7https://arstechnica.com/cars/2019/05/feds-autopilot-was-active-during-deadly-march-tesla-crash/
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Figure 3: Goal of a Tesla Neural Networks is to generate the correct responses for its environment.

The One Neuron System

If we investigate a one neuron system, our neuron could be diagrammed in four sections.8

Figure 4: One Neuron Schema

If we investigate one neuron for a moment, we find two separate mathematical functions are being carried
out by a single nerve cell.

Summation Function

The first segment is a summation function. It receives the real number values from, x1 to xn, all the branches
of the dendritic trees, and multiplies them by a set of weights. These X inputs are multiplied by a set of
corresponding unique weights from w1 to wn. An analogy I prefer is of small or large rivers joining giving
a total current. The current moves through the branches giving a total signal or current of sodium ions.
Interestingly the summation in each neuron, while dealing with the vectors of inputs and weights, is carrying
out the dot product of these vectors.

8Tom Mitchell, Machine Learning, McGraw-Hill, 1997, ISBN: 0070428077
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Initially, the NN researchers used the Heaviside-Threshold Function, as shown in figure 5.4, One Neuron
System. The benefits of step functions were their simplicity and high signal to noise ratio. While the
detriments were, it is a discontinuous function, therefore not differentiable and a mathematical problem.

Let us take into account the product, x0 · w0. If we assign x0 = T and w0 = −1 this simply becomes a
bias. This bias allows us the ability to shift our Activation Function and its inflection point in the positive
or negative x-direction.

Ŷ = XT ·W −Bias ≡
n∑
i=0

xiwi − T (1)

Activation Functions

The second function is called an Activation Function. Once the Summation Function yields a value, its result
is sent to the Activation Function or Threshold Function.

Z(1) = f

(
n∑
i=0

xiwi − T
)

= {0, 1} (2)

The function displayed in figure #6.4, One Neuron Schema, is a step function. However this step function
has a problem mathematically, namely it is a discontinuous and therefore not differentiable. This fact is
important.

Therefore several functions may be used in place of the step function. One is the hyperbolic tangent
(tanh) function, the sigmoidal function, a Hard Tanh, a reLU, and Softmax Functions. These have certain
advantages, namely they simplify the hyperbolic tangent function. Not only does the Hard Tanh and reLU
simplify calculations it is useful for increasing the gain near the asymptotic limits of the sigmoidal and tanh
functions. The derivatives of the sigmoidal and tanh functions are very small, near 0 and 1, while the reLU
and Hard Tanh slopes are one or zero.

Z(2) = tanh(x) = 1− e−α

1 + e−α : where α =
n∑
i=1

xiwi − T (3)

Z(3) = sigmoid(x) = 1
1 + e−α (4)

Z(4) = Hard Tanh(x) =


1 x > 1
x −1 ≤ x ≤ 1
−1 x < −1

(5)
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Several alternative functions are useful for various reasons. The most common of which are Softmax and
reLU functions.

Rectified Linear Activation Unit, (ReLU):

Z(5) = ReLU =

x ≥ 0 y = x

x < 0 y = 0
(6)

Binary Output Or Probability

In the case of real neurons, the output is off or on, zero or one. However, in the case of our electronic model,
it is advantageous to calculate a probability for greater interpretability.

The Softmax function may appear like the Sigmoid function from above but it differs in major
ways.9

• The softmax activation function returns the probability distribution over mutually exclusive
output classes.

• The calculated probabilities will be in the range of 0 to 1.
• The sum of all the probabilities is equals to 1.

Typically the Softmax Function is used in binary or multiple classification logistic regression models and in
building the final output layer of NN.

Z(6) = Softmax(x) = eαi∑n
i=1 e

αi
(7)

9Josh Patterson, Adam Gibson, Deep Learning; A Practitioner’s Approach, 2017, O’Rreilly
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The benefit of these activation functions is that they are now differentiable. This fact becomes important
for Back-Propagation, which is discussed later.
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The Two Neuron System

Building up in complexity, let us could consider our first Neural Network by using only two neurons. In two
neuron systems, let us first generalize a bit more by adding that X is an array of all the inputs as is W1 and
W2 is also an array of weights for each neuron. See figure #6.5.

Figure 5: A Two Neuron System

Feed-Forward In A Two Neuron Network

In our two neuron network, we can now write out the mathematics for each step as it progresses in a “forward”
(left to right) direction.

Step #1: To move from X to P1

f1(−→x ,−→w ) ≡ P1 =
(
XT ·W1 − T

)
(8)

Step #2: P1 feeds forward to Y

f2(P1) ≡ Ŷ =
(

1
1 + e−α

)
: where α = P1 (9)

Step #3: Y feeds forward to P2

f3(−→y ,−→w ) ≡ P2 =
(
Y T ·W2 − T

)
(10)

Step #4: P2 feeds forward to Z

f4(P2) ≡ Ẑ =
(

1
1 + e−α

)
: where α = P2 (11)

Step #5: Our complicated function is simply a matter of chaining one result so that it may be used in the
next step.

Ẑ = f4 (f3 (f2 (f1 (X,W )
)))

(12)

In our Feed-Forward Propagation, we can now take the values from any numerical system and produce
zeros, ones, or probabilities. Remember, in this set of experiments, we are using the concentrations of the
20 amino acids to provide a categorical or binary output, belongs to a) Myoglobin protein family, or b) does
not.
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Error Back-propagation

Now that we have learned to calculate the output of our neurons using the Feed-Forward process, what if
our final answer is incorrect? Can we build a feed back system to determine the weights needed to obtain
our desired value of ẑ? The short answer is yes. The process for determining the weights is known as Error
Back-Propagation. Error Back-Propagation, also known as Back-Propagation, is crucial to understanding
and tuning a neural network.
Simply stated Back-Propagation is an optimization routine which iteratively calculates the errors that occur
at each stage of a neural network. Starting from randomly seeded values for the initial weights, Back-
Propagation uses the partial derivatives of the feed forward functions. The chain rule and gradient descent
are also used to determine the weights (W1 and W2) which are propagated through the network to find
weights used in the summation step of a neuron.10

This thumbnail sketch gives the building blocks to calculate W which can be run until we reach a value that
we desire. However the first time the back-propagation is carried out all the weights are chosen randomly.
If the weights were set to the same number there would be no change throughout the system.
In the two neuron system, our first step is to generate an error or performance (Perf) function to minimize.
If we call d our desired value, we can minimize the square error, a common choice.11

Step #1: Performance (Perf)
Perf = c · (d− ẑ)2 (13)

Step #2:
dZ

dx
=

d
{
f4 (f3 (f2 (f1 (X,W )

)))}
dx

(14)

Figure 6: A Two Neuron System

Using the chain-rule, and figure 6.6, Two Neuron System as a guide, we can backwards to derive the formulas
for error back-propagation. We find:
Step #3: Neuron 2 ⇒ 1

δPerf

δw1
= δPerf

δz
· δz
δP2
· δP2

δy
· δy
δP1
· δP2

δw1
(15)

Step #4: Performance

δPerf

δz
=

δ
{

1
2‖
−→
d −−→z ‖2

}
δz

= d− z (16)

Step #5: Substitute P2 = α

δz

δP2
= δ ((1 + e−α)−1)

δα
= e−α · (1 + e−α)−2 (17)

10David Rumelhart, Geoffrey Hinton, & Ronald Williams, Learning Representations By Back-Propagating Errors, Nature,
323, 533-536, Oct. 9, 1986

11Ivan N. da Silva, Danilo H. Spatti, Rogerio A. Flauzino, Luisa H. B. Liboni, Silas F. dos Reis Alves, Artificial Neural
Networks: A Practical Course, DOI 10.1007/978-3-319-43162-8, 2017
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Step #6: Rearrange the right expression

e−α

(1 + e−α)−2 = e−α

1 + e−α ·
1

1 + e−α (18)

Step #7: Add 1 and subtract 1
= (1 + e−α)− 1

1 + e−α · 1
1 + e−α (19)

Step #8: Rearrange to find

=
(

1 + e−α

1 + e−α −
1

1 + e−α

)(
1

1 + e−α

)
=

(
1− 1

1 + e−α

)(
1

1 + e−α

)
(20)

Step #9: Therefore we find

δz

δα
= δ ((1 + e−α)−1)

δα
=

(
1− 1

1 + e−α

)(
1

1 + e−α

)
(21)

Nevertheless, we need one more part to ascertain the weights. As the error back-propagation is computed
this process does not reveal how much the weights need to be adjusted/changed to compute the next round
of weights given their current errors. For this we require one last equation or concept.

Once we compute the weights from our chain rule set of equations we must change the values in the direction
proportional to the change in error. This is performed by using gradient descent.

Step #10: Learning Rate
∆W : Wi+1 = Wi − η · δPerf

δW
(22)

where η is the learning rate for the system. The key to the learning rate is that it must be sought and its
range mapped for optimum efficiency. However smaller rates have the advantage of not overshooting the
desired minimum/maximum. If the learning rate is too large the values ofW may jump wildly and not settle
into a max/min. There is a fine balance that must be considered such that the weights are not trapped in a
local minimum and wildly oscillate unable to converge.

The last step of error back-propagation is simply setting up the derivatives mechanically and is not shown
for brevity.

Neural Network Experiment For Binary Classification

# Load Libraries
Libraries <- c("dplyr", "knitr", "readr", "caret", "MASS", "nnet", "purrr", "doMC")
for (p in Libraries) {

library(p, character.only = TRUE)
}

# Load Data
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",

col_types = cols(Class = col_factor(levels = c("0","1")),
PID = col_skip(),
TotalAA = col_skip()))
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# Create Training Data
set.seed(1000)
# Stratified sampling
TrainingDataIndex <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

# Create Training Data
trainingData <- c_m_TRANSFORMED[ TrainingDataIndex, ]
testData <- c_m_TRANSFORMED[-TrainingDataIndex, ]

TrainingParameters <- trainControl(method = "repeatedcv",
number = 10,
repeats = 5,
savePredictions = "final") # Saves predictions

TuneSizeDecay <- expand.grid(size = c(16, 18, 20),
decay = c(1, 0.1, 0.01))

Train model with neural networks

end_time - start_time # Display time

## Time difference of 5.439274 mins

Confusion Matrix and Statistics

NNPredictions <- predict(NNModel, testData)

# Create confusion matrix
cmNN <-confusionMatrix(NNPredictions, testData$Class)
print(cmNN)

## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 239 9
## 1 4 215
##
## Accuracy : 0.9722
## 95% CI : (0.9529, 0.9851)
## No Information Rate : 0.5203
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9442
##
## Mcnemar's Test P-Value : 0.2673
##
## Sensitivity : 0.9835
## Specificity : 0.9598
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## Pos Pred Value : 0.9637
## Neg Pred Value : 0.9817
## Prevalence : 0.5203
## Detection Rate : 0.5118
## Detection Prevalence : 0.5310
## Balanced Accuracy : 0.9717
##
## 'Positive' Class : 0
##

NNModel

## Neural Network
##
## 1873 samples
## 20 predictor
## 2 classes: '0', '1'
##
## Pre-processing: scaled (20), centered (20)
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
## Resampling results across tuning parameters:
##
## size decay Accuracy Kappa
## 16 0.01 0.9675458 0.9349866
## 16 0.10 0.9724570 0.9448152
## 16 1.00 0.9609233 0.9216202
## 18 0.01 0.9703226 0.9405495
## 18 0.10 0.9708545 0.9416022
## 18 1.00 0.9618830 0.9235428
## 20 0.01 0.9703157 0.9405366
## 20 0.10 0.9716003 0.9430995
## 20 1.00 0.9612419 0.9222614
##
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 16 and decay = 0.1.

Obtain List of False Positives & False Negatives

fp_fn_NNModel <- NNModel %>% pluck("pred") %>% dplyr::filter(obs != pred)

# Write/save .csv
write.table(fp_fn_NNModel,

file = "./00-data/03-ml_results/fp_fn_NN.csv",
row.names = FALSE,
na = "",
col.names = TRUE,
sep = ",")

nrow(fp_fn_NNModel) ## NOTE: NOT UNIQUE NOR SORTED

## [1] 258
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False Positive & False Negative Neural Network set

keep <- "rowIndex"

fp_fn_NN <- read_csv("./00-data/03-ml_results/fp_fn_NN.csv")

NN_fp_fn_nums <- sort(unique(unlist(fp_fn_NN[, keep], use.names = FALSE)))

length(NN_fp_fn_nums)

## [1] 81

NN_fp_fn_nums

## [1] 4 6 15 16 46 57 94 97 100 114 115 116 130 136 149
## [16] 150 170 179 182 183 185 249 445 449 453 503 518 522 526 530
## [31] 531 532 534 546 547 566 570 580 592 655 910 913 980 1033 1034
## [46] 1035 1093 1094 1100 1101 1117 1121 1130 1190 1219 1226 1233 1264 1300 1471
## [61] 1510 1522 1575 1576 1579 1585 1587 1594 1608 1618 1621 1693 1697 1734 1771
## [76] 1773 1780 1789 1831 1833 1873

write_csv(x = as.data.frame(NN_fp_fn_nums),
path = "./00-data/04-sort_unique_outliers/NN_nums.csv")

Neural Network Conclusion

The Neural Network set included a total of 79 unique observations containing both FP and FN.

Accuracy was the primary criteria used to select the optimal model. There were 20 models tested. The
neural network was configured with 20 inputs (one for each amino acid), one hidden layer and one output.
The hidden layer was tested with either 10, 12, 14, 16, 18, 20 neurons and a array of different decays (1, 0.1,
0.01, 0.001). The caret software has a tuning parameter named tuneGrid that allows users to expand a set
of arrays to a matrix of combinations to be tested. Therefore 20 models were tested with the training data
set and the best values were size = 20 and decay = 0.1.

At this time, the author is not aware of any heuristic that gives the proper number of hidden layers and the
proper number of neurons in each layer therefore one must search the experimental space for an optimized
configuration. If a more thorough search of the experiemntal space was carried out using two or three hidden
layers would be investigated. The poor showing of the Neural Network suggests that the data may have
some additional decision boundary that is not yet represented by only 20 neurons.
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Support Vector Machines For Binary Classification
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Support Vector Machines for Binary Classification

“Support Vector Machines should be in the tool bag of every civilized person.”
Patrick Henry Winston 1

Introduction

Support Vector Machine (SVM) learning is a supervised learning technique that may be used as a binary
classification system or to find a regression formula. Support vector machines are a “maximum margin
classifier. SVM finds the separating hyperplane with the maximum margin to its closest data points.” 2

Although there are many mathematical approaches to solving SVM, many of which include kernels, let us
first describe the Linear SVM used for binary classification. Consider a situation where we need to distinguish
between two circumstances, or classes.

In an imaginary biochemistry laboratory, researchers discover a novel enzyme found in different tissues
throughout the human body. Biochemists purify the enzyme from several cadavers and several different
tissue types. Literature suggests that this newly found enzyme has two isozymes, 1) Alpha has a high
reaction rate and 2) Beta has a lower reaction rate. It now seems like a simple task to learn which isozymes
you possess. Carry out kinetic enzyme analysis on the purified samples then attempt to classify them.

Once you have carried out the kinetic analysis you then determine the Michaelis–Menten constant, KM . The
KM constant is plotted on a single axis and produces the graphic below.

Linearly Separable

In test #1, we can see the two isozymes can easily separated by activity alone. Figure 1 demonstrates that
the data is linearly separable. The dataset is linearly separable if a single straight line can partition the data.
In more general terms, “if the classes are linearly separable, it can be shown that the algorithm converges to
a separating hyperplane.” 3 As Cortes and Vapnik indicate the hyperplane is the decision boundary of any
high dimension feature space, considering a hyperplane has one less dimension than its n-dimensional space.

Incidentally, in Patrick Winston’s lecture on SVM, he calls SVM the “widest street approach.” 4 Why does
Professor Winston use this term? There are many possible streets which can be traced but the goal is to

1Patrick Henry Winston, 6.034 Artificial Intelligence, Fall 2010, Massachusetts Institute of Technology: MIT OpenCourse-
Ware, http://ocw.mit.edu/6-034F10

2Nika Haghtalab & Thorsten Joachims, CS4780/5780 - Machine Learning for Intelligent Systems, Fall 2019, Cornell Univer-
sity, Department of Computer Science, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html

3Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning; Data Mining, Inference, and
Prediction, https://web.stanford.edu/~hastie/ElemStatLearn/, 2017

4Patrick Winston, 6.034 Artificial Intelligence, Fall 2010, Massachusetts Institute of Technology: MIT OpenCourseWare,
http://ocw.mit.edu/6-034F10
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Test #1; Enzyme Rates, Km

Km (rate of reactant consumption per unit time)

Figure 1: Is linearly separable data.

find the widest street. Many streets may be drawn in our example, but requiring the widest street leads to
one. In fact, “an optimal hyperplane is here defined as the linear decision function with maximal margin
between the vectors of the two classes.” 5

6

Adding the prosaic phrase widest street smartly leads to the idea that a widest decision boundary also has
the greatest ability to generalize.
7

However in real life, linearly separabale data is rarely the case. Most often the activities are mixed as shown
in test #2.

Understanding the hyperplane equation

If we were trying to find:

1
2Ŵ (X⊕ − X	) (1)

Where Ŵ =
(

x1
||x|| ,

x2
||x||

)
and X⊕ and X	 represent data points that are labeled either positive or negative.

Suppose that X⊕ and X	 are equidistant from the decision boundary:
5C. Cortes, V. Vapnik, Machine Learning, 20, 273-297, 1995
6C. Cortes, V. Vapnik, Machine Learning, 20, 273-297, 1995
7Allison Horst, University of California, Santa Barbara, https://github.com/allisonhorst/stats-illustrations
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Figure 2: Vapnick SVM Diagram

Figure 3: P Values Schematic

3



0 1 2 3 4 5 6

Test #2; Enzyme Rates, Km

Km (rate of reactant consumption per unit time)

Figure 4: Is not linearly separable data.

Where a represents the region above the hyperplane;

WTX⊕ + b = a (2)

and where −a represents the region below the hyperplane or decision boundary.

WTX	 + b = −a (3)

Subtracting the two equations:

WT (X⊕ − X	) = 2a (4)

Divide by the norm of w:

ŴT (X⊕ − X	) = 2a
||W ||

(5)
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Soft Margins

In the case above, the activities overlap hence determining which isozyme is Alpha or Gamma is more
difficult. In 1995, C. Cortes and V. Vapnik introduced the mathematics and ideas for “Soft Margins” or
non-separable training data.9

The same is true of an n-dimensional system.
The first mention of an SVM like system is by Vapnik and Lerner in 1963, where the two described an
implementation of a non-linear generalization called a Generalized Portrait algorithm.10 As research has
progressed, the types and complexity of SVM implementations have grown to encompass many circumstances.
The ability of SVM to deal with different problems and handle different decision boundary shapes has made
SVM a potent tool.

Kernel Use

For example, this experiment has chosen to investigate three possible decision boundary shapes for the
two-class protein data. The three mathematical constructs which will be tested are:

1. Linear hyperplane (also known as “plain-vanilla”),
2. Curvilinear or polynomial hyperplane and,
3. A radial basis function hyperplane,
4. Sigmoidal.

Linear: K(x, y) = wTx+ b

• The linear kernel does not transform the data at all.

Three common SVM kernel formulae investigated are:
8Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning; Data Mining, Inference, and

Prediction, https://web.stanford.edu/~hastie/ElemStatLearn/, 2017
9C.Cortes, V.Vapnik, Machine Learning, 20, 273-297, 1995

10V. Vapnik and A. Lerner, 1963. Pattern recognition using generalized portrait method. Automation and Remote Control,
24, 774–780
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Polynomial: K(xi, y) = (γ xT
i xj + r)d, γ > 0

• The polynomial kernel has a straightforward non-linear transform of the data.
• Such that γ, r, and d are kernel parameters.

Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖ xT
i − xj ‖2), γ > 0

• The Gaussian RBF kernel which performs well on many data and is a good default

Sigmoidal: K(x, y) = tanh(γ xT y + r), γ > 0

• Incidentally, The sigmoid kernel produces an SVM analogous to the activation function similar to a
[perceptron] with a sigmoid activation function.11

It is essential to note, at this time, there are no reliable rules for which kernel, i.e., boundary shape, to
use with any given data set.

11(https://data-flair.training/blogs/svm-kernel-functions/)
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Plots of 4 common SVM boundary shapes:
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SVM-Linear Intuition

The simplest form of SVM utilizes a hyperplane as a separating element between the positive and control
protein observations. This type of implementation is denoted as SVM-Linear (svm-lin) in this report. Here
the mathematics is more easily described and can even be shown with a simple 2-dimensional graphic.

7



12

Given a set of labeled pairs of data:

{(X1, y), ..., (Xm, y)}, y ∈ {1, − 1}, where Xm x n ∈ < (6)

For mathematical convenience, the labels are a set of values 1 or -1.

Therefore, we may write.

f(xi) =
{

x ≥ 0; y = 1
x < 0; y = −1 (7)

This is no different than is currently done in beginner level algebra. As is shown in the example below, the
same is true for higher-dimensional problems.

Will be described and calculated in more detail in this report. However, there are alternative implementations
of SVM.

In this experiment, three implementations of SVM have been used. The three are denoted as SVM-Linear
(svm-lin), SVM-Polynomial (svm-poly), and SVM-Radial Basis Function (svm-rbf).

The switches in the R/caret software are easy such that one can use a number of kernels by changing the
name of method..

with differing amounts of hyperparameters to modify. The intuition for the svm-poly and svm-rbf is also
fairly straightforward. Instead of using a linear hyperplane to bisect the hi-dimensional space, which describes
the decision boundary, the mathematics for a polynomial curvilinear function or a radial basis function may
be utilized.

Yet another measurable difference that was investigated in this experiment was the use of a kernel trans-
formation. It is conceivable to envision a hyperplane with no transformations utilized. Alternatively, the
kernel transformations of original data can be used to increase the ability of the function to differentiate
between positively and negatively labeled samples. A mathematical treatment can be found by Christopher
Burges.13

As the usage of SVM grew, different issues presented problems for defining and coding the decision boundary
were found. In the simplest case, the data points that sit along the support vector are nicely and neatly on
the positive or the negative side. This is known as a hard margin which delineates the decision boundary.
In reality, the decision boundary may include positive or negative datapoints that sporadically cross the
boundary. In the circumstance where the decision boundary has similar points on either side, a penalty may
be enlisted to deter the mathematics from choosing a boundary that includes too many misfit datapoints. In
1995, Support Vector Machines were described by Vladimir Vapnik and Corinna Cortes while at Bell Labs
dealt with the soft-margin that occurs in the above situation.14

SVM is a non-parametric approach to regression and classification models.

What is Non-parametric?

For that matter, what is parametric learning and models. Just as we have learned that machine learning
models can be supervised, unsupervised, or even semi-supervised another characteristic between machine
learning models is whether they are parametric or not.

In Webster’s dictionary 15 states a parameter is

a. Estimation of values which enter into the equation representing the chosen relation
12Vladimir Vapnik & Corinna Cortes, Machine Learning, 20, 273-297, 1995
13Christopher Burges, Tutorial on Support Vector Machines for Pattern Recognition, D.M. & Knowl. Dis., 2, 121-167, 1998
14Vladimir Vapnik & Corinna Cortes, Machine Learning, 20, 273-297, 1995
15Webster’s third new international dictionary, ISBN 0-87779-201-1, 1986
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b. “[An] independent variable through functions of which other functions may be expressed”,
Frank Yates, a 20th-century statistician

Another excellent explanation of this idea includes;

Does the model have a fixed number of parameters, or does the number of parameters grow with
the amount of training data? The former is called a parametric model, and the latter is called a
non-parametric model. Parametric models have the advantage of often being faster to use, but the
disadvantage of making stronger assumptions about the nature of the data distributions. Non-
parametric models are more flexible, but often computationally intractable for large datasets.16

Since Support Vector Machines are best described as a system where increasing the amount of training data,
the numbers of parameters may grow as well. Therefore SVM is a non-parametric technique. Considering
this idea in more detail, the estimation of the decision boundary does not entirely rely on the estimation of
independent values (i.e., the values of the parameters). SVM is fascinating because the decision boundary
may only rely on a small number of data points, otherwise known as support vectors.

In short, one guiding idea of SVM is a geometric one. In a binary-class learning system, the metric for
the concept of the “best” classification function can be realized geometrically17 by using a line or a plane
(more precisely called a hyperplane when discussing multi-dimensional datasets) to separate the two labeled
groups. The hyperplane that separates the labeled sets is also known as a decision boundary.

This decision boundary can be described as having a hard or soft margin. As one might suspect, there
are instances where the delineation between the labels is pronounced when this occurs decision boundary
produces a hard margin. Alternatively, when the demarcation between the labeled groups is not so well
defined by a straight and rigid line, the decision boundary provided is a soft margin. In either case, researchers
have built up mathematics to deal with hard and soft margins. As an aside, the use of penalization is one
method for coping with data points that impinge on the boundary hyperplane.

By introducing a “soft margin” instead of a hard boundary, we can add a slack variable xi to account for
the amount of a violation by the classifier, which later can be minimized.

In short, one guiding idea of SVM is a geometric one. In a binary-class learning system, the metric for
the concept of the “best” classification function can be realized geometrically18 by using a line or a plane
(more precisely called a hyperplane when discussing multi-dimensional datasets) to separate the two labeled
groups. The hyperplane that separates the labeled sets is also known as a decision boundary.

[ Big O notation ]Big O notation 19

Algorithm Training Prediction
SVM (Kernel) O(n2p+ n3) O(nsvp)

Where p is the number of features, n_s v_p is the number of support vectors
There are three properties that make SVMs attractive for data scientists:20

1. SVMs construct a maximum margin separator—a decision boundary with the largest pos-
sible distance to example points. This helps them generalize well.

16Kevin P. Murphy, Machine Learning, A Probabilistic Perspective, MIT Press, ISBN 978-0-262-01802-9, 2012
17Xindong Wu, et al., Top 10 algorithms in data mining, Knowl Inf Syst, 14:1–37, DOI:10.1007/s10115-007-0114-2, 2008
18Xindong Wu, et al., Top 10 algorithms in data mining, Knowl Inf Syst, 14:1–37, DOI:10.1007/s10115-007-0114-2, 2008
19Alexandros Karatzoglou, David Meyer, Kurt Hornik, ‘Support Vector Machines in R’, Journal of Statistical Software, April

2006, Volume 15, Issue 9.
20Stuart Russell and Peter Norvig, Artificial Intelligence, A Modern Approach, Third Edition, Pearson, ISBN-13: 978-0-13-

604259-4, 2010

9

DOI:10.1007/s10115-007-0114-2
DOI:10.1007/s10115-007-0114-2


2. SVMs create a linear separating hyperplane, but they have the ability to embed the data
into a higher-dimensional space, using the so-called kernel trick. Often, data that are not
linearly separable in the original input space are easily separable in the higher- dimensional
space. The high-dimensional linear separator is actually nonlinear in the original space.
This means the hypothesis space is greatly expanded over methods that use strictly linear
representations.

3. SVMs are a nonparametric method—they retain training examples and potentially need
to store them all. On the other hand, in practice they often end up retaining only a
small fraction of the number of examples—sometimes as few as a small constant times
the number of dimensions. Thus SVMs combine the advantages of nonparametric and
parametric models: they have the flexibility to represent complex functions, but they are
resistant to overfitting.

SVM-Linear Model

# Load Libraries
Libraries <- c("doMC", "knitr", "readr", "tidyverse", "caret", "kernlab")
for (p in Libraries) { # Install Library if not present

if (!require(p, character.only = TRUE)) { install.packages(p) }
library(p, character.only = TRUE)

}

# Import data & data handling
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",

col_types = cols(Class = col_factor(levels = c("0", "1")),
PID = col_skip(),
TotalAA = col_skip()))

Partition data into training and testing sets

set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[ index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

SVM-Linear Training

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

# tuneGrid = svmLinearGrid
svmLinearGrid <- expand.grid(C = c(2^(4.5), 2^5, 2^(5.5)))

# Create model, 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",
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number = 10,
repeats = 5,
savePredictions = "final") # Saves predictions

lin_model_obj <- train(Class ~ .,
data = training_set,
method = "svmLinear",
trControl = tcontrol,
tuneGrid = svmLinearGrid)

end_time <- Sys.time() # End timer
end_time - start_time # Display time

## Time difference of 1.845401 mins

registerDoSEQ() # Stop multi-processor mode

SVM-Linear Model Summary

lin_model_obj

## Support Vector Machines with Linear Kernel
##
## 1873 samples
## 20 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
## Resampling results across tuning parameters:
##
## C Accuracy Kappa
## 22.62742 0.9482199 0.8961196
## 32.00000 0.9484338 0.8965504
## 45.25483 0.9485402 0.8967687
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was C = 45.25483.

SVM-Linear Predict test_set

Predicted_test_vals <- predict(lin_model_obj, test_set[, -1])

summary(Predicted_test_vals)

## 0 1
## 250 217
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SVM-Linear Confusion Matrix

confusionMatrix(Predicted_test_vals, Class_test, positive = "1")

## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 234 16
## 1 9 208
##
## Accuracy : 0.9465
## 95% CI : (0.922, 0.9651)
## No Information Rate : 0.5203
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8926
##
## Mcnemar's Test P-Value : 0.2301
##
## Sensitivity : 0.9286
## Specificity : 0.9630
## Pos Pred Value : 0.9585
## Neg Pred Value : 0.9360
## Prevalence : 0.4797
## Detection Rate : 0.4454
## Detection Prevalence : 0.4647
## Balanced Accuracy : 0.9458
##
## 'Positive' Class : 1
##

SVM-Linear Obtain False Positives & False Negatives

fp_fn_svm_linear <- lin_model_obj %>% pluck("pred") %>% dplyr::filter(obs != pred)

# Write out to Outliers folder
write.table(fp_fn_svm_linear,

file = "./00-data/03-ml_results/fp_fn_svm_linear.csv",
row.names = FALSE,
na = "",
col.names = TRUE,
sep = ",")

nrow(fp_fn_svm_linear)

## [1] 482
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head(fp_fn_svm_linear)

## C pred obs rowIndex Resample
## 1 45.25483 0 1 1223 Fold01.Rep1
## 2 45.25483 0 1 1873 Fold03.Rep1
## 3 45.25483 0 1 1101 Fold05.Rep1
## 4 45.25483 0 1 1618 Fold04.Rep1
## 5 45.25483 0 1 1866 Fold01.Rep1
## 6 45.25483 0 1 1831 Fold05.Rep1

SVM-Polynomial Model

Partition data into training and testing sets

set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[ index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

SVM-Poly Training

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

# Create model, 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",

number = 10,
repeats = 5,
savePredictions = "final") # Saves predictions

poly_model_obj <- train(Class ~ .,
data = training_set,
method = "svmPoly",
trControl= tcontrol)

end_time <- Sys.time() # End timer
end_time - start_time # Display time

## Time difference of 3.100607 mins

registerDoSEQ() # Stop multi-processor mode
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SVM-Poly Model Summary

poly_model_obj

## Support Vector Machines with Polynomial Kernel
##
## 1873 samples
## 20 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
## Resampling results across tuning parameters:
##
## degree scale C Accuracy Kappa
## 1 0.001 0.25 0.8927921 0.7837449
## 1 0.001 0.50 0.8931101 0.7842397
## 1 0.001 1.00 0.8995164 0.7972922
## 1 0.010 0.25 0.9069985 0.8125193
## 1 0.010 0.50 0.9182148 0.8352852
## 1 0.010 1.00 0.9243031 0.8476521
## 1 0.100 0.25 0.9266532 0.8524643
## 1 0.100 0.50 0.9326311 0.8645594
## 1 0.100 1.00 0.9340187 0.8674061
## 2 0.001 0.25 0.8935368 0.7851036
## 2 0.001 0.50 0.8997298 0.7977161
## 2 0.001 1.00 0.9046473 0.8077461
## 2 0.010 0.25 0.9208824 0.8406987
## 2 0.010 0.50 0.9316686 0.8625657
## 2 0.010 1.00 0.9356167 0.8705585
## 2 0.100 0.25 0.9672198 0.9342616
## 2 0.100 0.50 0.9670042 0.9338334
## 2 0.100 1.00 0.9649755 0.9297728
## 3 0.001 0.25 0.8969559 0.7920424
## 3 0.001 0.50 0.9014433 0.8012428
## 3 0.001 1.00 0.9110610 0.8207620
## 3 0.010 0.25 0.9339083 0.8670639
## 3 0.010 0.50 0.9365781 0.8724848
## 3 0.010 1.00 0.9464057 0.8923335
## 3 0.100 0.25 0.9688252 0.9375066
## 3 0.100 0.50 0.9704278 0.9407533
## 3 0.100 1.00 0.9690403 0.9379858
##
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were degree = 3, scale = 0.1 and C = 0.5.

SVM-Poly Predict test_set

Predicted_test_vals <- predict(poly_model_obj, test_set[, -1])
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summary(Predicted_test_vals)

## 0 1
## 246 221

SVM-Poly Confusion Matrix

confusionMatrix(Predicted_test_vals, Class_test, positive = "1")

## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 238 8
## 1 5 216
##
## Accuracy : 0.9722
## 95% CI : (0.9529, 0.9851)
## No Information Rate : 0.5203
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9442
##
## Mcnemar's Test P-Value : 0.5791
##
## Sensitivity : 0.9643
## Specificity : 0.9794
## Pos Pred Value : 0.9774
## Neg Pred Value : 0.9675
## Prevalence : 0.4797
## Detection Rate : 0.4625
## Detection Prevalence : 0.4732
## Balanced Accuracy : 0.9719
##
## 'Positive' Class : 1
##

SVM-Poly Obtain False Positives & False Negatives

fp_fn_svm_poly <- poly_model_obj %>% pluck("pred") %>% dplyr::filter(obs != pred)

# Write CSV in R
write.table(fp_fn_svm_poly,

file = "./00-data/03-ml_results/fp_fn_svm_poly.csv",
row.names = FALSE,
na = "",
col.names = TRUE,
sep=",")

nrow(fp_fn_svm_poly)
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## [1] 277

head(fp_fn_svm_poly)

## degree scale C pred obs rowIndex Resample
## 1 3 0.1 0.5 0 1 1576 Fold01.Rep2
## 2 3 0.1 0.5 1 0 182 Fold09.Rep4
## 3 3 0.1 0.5 1 0 445 Fold06.Rep5
## 4 3 0.1 0.5 1 0 531 Fold09.Rep4
## 5 3 0.1 0.5 1 0 115 Fold05.Rep2
## 6 3 0.1 0.5 0 1 1780 Fold02.Rep2

SVM-RBF Model

# Load Libraries
rm(list = ls())
Libraries = c("doMC", "knitr", "readr", "tidyverse", "caret", "kernlab")

for(p in Libraries){ # Install Library if not present
if(!require(p, character.only = TRUE)) { install.packages(p) }
library(p, character.only = TRUE)

}
opts_chunk$set(cache = TRUE)

Import data & data handling

c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",
col_types = cols(Class = col_factor(levels = c("0","1")),

PID = col_skip(), TotalAA = col_skip()))
#View(c_m_TRANSFORMED)

Partition data into training and testing sets

set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[ index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

SVM-RBF Training

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

# Create tuneGrid: Cost

16



tune.Grid = data.frame(expand.grid(C = 2^(seq(-5, 15, 2))))

# Create: 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",

number = 10,
repeats = 5,
savePredictions = "final") # Save predictions

rbf_model_obj <- train(Class ~ .,
data = training_set,
method = "svmRadialCost",
tuneGrid = tune.Grid,
trControl= tcontrol)

end_time <- Sys.time() # End timer
end_time - start_time # Display time

## Time difference of 1.12283 mins

registerDoSEQ() # Stop multi-processor mode

SVM-RBF Model Summary

rbf_model_obj

## Support Vector Machines with Radial Basis Function Kernel
##
## 1873 samples
## 20 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
## Resampling results across tuning parameters:
##
## C Accuracy Kappa
## 3.1250e-02 0.9144721 0.8278653
## 1.2500e-01 0.9511031 0.9018251
## 5.0000e-01 0.9704221 0.9406791
## 2.0000e+00 0.9699937 0.9398269
## 8.0000e+00 0.9740562 0.9480186
## 3.2000e+01 0.9720247 0.9439679
## 1.2800e+02 0.9711714 0.9422795
## 5.1200e+02 0.9715980 0.9431324
## 2.0480e+03 0.9714916 0.9429197
## 8.1920e+03 0.9715980 0.9431330
## 3.2768e+04 0.9714916 0.9429209
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was C = 8.
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SVM-RBF Predict test_set

Predicted_test_vals <- predict(rbf_model_obj, test_set[, -1])

summary(Predicted_test_vals)

## 0 1
## 245 222

SVM-RBF Confusion Matrix

confusionMatrix(Predicted_test_vals, Class_test, positive = "1")

## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 238 7
## 1 5 217
##
## Accuracy : 0.9743
## 95% CI : (0.9555, 0.9867)
## No Information Rate : 0.5203
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9485
##
## Mcnemar's Test P-Value : 0.7728
##
## Sensitivity : 0.9688
## Specificity : 0.9794
## Pos Pred Value : 0.9775
## Neg Pred Value : 0.9714
## Prevalence : 0.4797
## Detection Rate : 0.4647
## Detection Prevalence : 0.4754
## Balanced Accuracy : 0.9741
##
## 'Positive' Class : 1
##

SVM-RBF Obtain False Positives & False Negatives

fp_fn_svmRadialCost <- rbf_model_obj %>% pluck("pred") %>% dplyr::filter(obs != pred)

# Write CSV in R
write.table(fp_fn_svmRadialCost,

file = "./00-data/03-ml_results/fp_fn_svmRbf.csv",
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row.names = FALSE,
na = "",
col.names = TRUE,
sep=",")

nrow(fp_fn_svmRadialCost)

## [1] 243

head(fp_fn_svmRadialCost)

## C pred obs rowIndex Resample
## 1 8 1 0 522 Fold01.Rep1
## 2 8 0 1 1579 Fold07.Rep1
## 3 8 0 1 1585 Fold02.Rep1
## 4 8 0 1 1587 Fold07.Rep1
## 5 8 1 0 141 Fold07.Rep3
## 6 8 1 0 94 Fold03.Rep1

SVM Conclusion

SVM has shown that it is very versatile. Using the same amino acid dataset and by changing the type of
function used to build the decision boundary one can get results in the high 90%. Even the linear SVM with
no kernel transformation is able to find a hyperplane that with no more tuning than choosing a large enough
range for the cost function.

It was seen that using a range for the cost starting at 25 and progressing toward 2−15, stepping by one log,
a wide range can be tested. Once the cost function range is narrowed a finer tuning can be carried out using
one-quarter or one-half log steps. This further narrowing of the cost function may not need to be done since
the one log steps seems anecdotally sufficient. This is an easy and powerful tool.
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Results

I have studied six different M.L. algorithms using protein amino acid percent composition data from two
classes. Class number 1 is Myoglobin proteins, which is the positive control set. While the second class is a
control group (0) of human proteins that do not have Fe binding centers.

Group Class N of Class Range of Groups
Controls 0 or (-) 1216 1, . . . , 1216
Myoglobin 1 or (+) 1124 1217, . . . , 2340

The Six M.L Algorithms consist of:

Name Type Output Used For Graphing
Principal Component Analysis Unsupervised Anomalies > Abs(3σ)
Logistic Regression Supervised FP & FN
SVM-linear Supervised FP & FN
SVM-polynomial kernel Supervised FP & FN
SVM-radial basis function kernel Supervised FP & FN
Neural Network Supervised FP & FN

=========================

Scatter Plots of Anomalies Vs. FP & FN Outputs
To obtain False-Positive (FP) and False-Negatives (FN) from sets:

1. False-Postives def= {obs = 0 ∧ pred = 1}

2. False-Negatives def= {obs = 1 ∧ pred = 0}

Anomalies Inner Joined with PC

# Load Libraries
Libraries = c("knitr", "readr")
for(p in Libraries){

library(p, character.only = TRUE)
}
opts_chunk$set(fig.align = "center", cache=TRUE)
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# Prepare PCA: PC1 and PC2 for all 2340 proteins
norm_c_m_20aa <- read_csv("./00-data/03-ml_results/norm_c_m_20aa.csv")

pca_values <- prcomp(norm_c_m_20aa)

row_pc12 <- cbind(rowNum = 1:2340, PC1 = pca_values$x[,1], PC2 = pca_values$x[,2])
# dim(row_pc12)
write.table(row_pc12,

file = "./00-data/05-joins_plots/row_pc12.txt",
sep = ",",
row.names = F)

# Inner-join (merge) with PC 1&2 (row_pc12)
logit_pc <- merge(x = logit_nums, y = row_pc12, by = "rowNum")
pca_pc <- merge(x = pca_outliers, y = row_pc12, by = "rowNum")
nn_pc <- merge(x = nn_nums, y = row_pc12, by = "rowNum")
svm_lin_pc <- merge(x = svm_lin_nums, y = row_pc12, by = "rowNum")
svm_poly_pc <- merge(x = svm_poly_nums, y = row_pc12, by = "rowNum")
svm_rbf_pc <- merge(x = svm_rbf_nums, y = row_pc12, by = "rowNum")
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PCA-Anomalies Plot
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Logit Plot
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SVM-Linear Plot
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SVM-Polynomial Plot
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SVM-Radial Basis Function Plot

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

SVM−RBF FP/FN On PC 1 & 2 Axes

(SVM−RBF pts are overlayed on PCA)
PC1

P
C

2

6

1594115

130

141

150
182183185

192

449
453

522525

526529531
534

542

546

566
568570

580

582

592
655

913
10341035

109110931094
1100

1101

11091121

1190

1219
122612331264147114751510
1575

1576

1579

1585

1587

16081618

1621

1766

1780

1831

1833

7



Neural Network Function Plot
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Statistical Learning Method Vs Total Number of FP/FN

Statistical Method Unique
Principal Componnent Analysis 460
Logit 119
SVM Linear 125
SVM Polynomial 70
SVM Radial Basis Function 58
Deep Learning 79

Comparison of Machine Learning Accuracies

# Load Libraries
Libraries <- c("doMC", "knitr", "readr", "caret", "nnet", "caretEnsemble", "e1071", "kernlab")
for (p in Libraries) {

library(p, character.only = TRUE)
}
knitr::opts_chunk$set(echo = TRUE, fig.align="center")

# Import data & data handling
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",

col_types = cols(Class = col_factor(levels = c("0", "1")),
PID = col_skip(),
TotalAA = col_skip()))

# Partition data into training and testing sets
set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[ index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

Stacking Algorithms - Run multiple algorithms in one call.

## Warning in caretList(Class ~ ., data = training_set, trControl = trainControl, :
## Duplicate entries in methodList. Using unqiue methodList values.

## # weights: 287
## initial value 1622.518111
## iter 10 value 591.200854
## iter 20 value 331.103547
## iter 30 value 281.561829
## iter 40 value 215.474048
## iter 50 value 179.866748
## iter 60 value 111.221062
## iter 70 value 76.163156
## iter 80 value 55.582062
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## iter 90 value 46.458483
## iter 100 value 39.618132
## final value 39.618132
## stopped after 100 iterations

summary(results)

##
## Call:
## summary.resamples(object = results)
##
## Models: glm, nnet, svmLinear, svmPoly, svmRadialCost
## Number of resamples: 10
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## glm 0.8784104 0.8954626 0.9110056 0.9078127 0.9184104 0.9311981 0
## nnet 0.9098458 0.9208185 0.9281899 0.9286350 0.9334118 0.9525504 0
## svmLinear 0.9139466 0.9215485 0.9288256 0.9292275 0.9373989 0.9454330 0
## svmPoly 0.9234875 0.9346085 0.9421534 0.9415091 0.9485244 0.9584816 0
## svmRadialCost 0.9383155 0.9454330 0.9522539 0.9510603 0.9553610 0.9614243 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## glm 0.7561869 0.7905961 0.8215603 0.8152905 0.8365124 0.8619539 0
## nnet 0.8193980 0.8411102 0.8560213 0.8569694 0.8665330 0.9048933 0
## svmLinear 0.8275022 0.8422492 0.8569400 0.8578486 0.8743642 0.8905356 0
## svmPoly 0.8467331 0.8688294 0.8839959 0.8827193 0.8967519 0.9169053 0
## svmRadialCost 0.8764532 0.8906928 0.9043832 0.9019157 0.9104916 0.9226237 0
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Plot the resamples output to compare the models.

glm

nnet

svmLinear

svmPoly

svmRadialCost

0.88 0.90 0.92 0.94 0.96

Accuracy

glm

nnet

svmLinear

svmPoly

svmRadialCost

0.75 0.80 0.85 0.90

Kappa

Mean Accuracies of M.L. Techniques, n=10

Rank M.L. Technique Mean Accuracy
1 SVM-RBF 0.9510603
2 SVM-Poly 0.9415091
3 SVM-Lin 0.9292275
4 NN w 20 Neurons 0.9286350
5 Logit 0.9078127
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Biplot1.annotated.png

This research was carried out to investigate if there is any relationship between the unsupervised machine
learning technique of Principal Component Analysis and five alternate methods. The five alternative methods
included 3 Support Vector Machines, a Neural Network and Logistic Regression.

The comparison between PCA and the five alternate M.L. methods was done be using only the first two
Principal Components, since these two comprise approximately 50% of the error of total sum of squares
error. See table 8.1.

Table 8.1, The Six M.L Algorithms consist of:

Name Type Output Used For Graphing
Principal Component Analysis Unsupervised Anomalies > Abs(3σ)
Logistic Regression Supervised FP & FN
SVM-linear Supervised FP & FN
SVM-polynomial kernel Supervised FP & FN
SVM-radial basis function kernel Supervised FP & FN
Neural Network w 20 Neurons Supervised FP & FN

Comparison of PCA Anomalies

of this study was that there would be a correlation or overlap of the anomalies which occurred

Statistical Learning Method Vs Total Number of FP/FN

Statistical Method Unique
Principal Component Analysis 460
Logit 119
SVM Linear 125
SVM Polynomial 70
SVM Radial Basis Function 58
Deep Learning 79

1



Figure 1: Biplot of Problem regions for all M.L. models
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Comparison of Accuracy Measurements

Mean Accuracies of M.L. Techniques, n=10

Rank M.L. Technique Mean Accuracy
1 SVM-RBF 0.9510603
2 SVM-Poly 0.9415091
3 SVM-Lin 0.9292275
4 NN w 20 Neurons 0.9286350
5 Logit 0.9078127

One main tenet of fitting any model to a set of number is that it is helpful and even important to know about
the distribution(s) of the number set(s). However without fore knowledge about the distribution(s) modeling
may be difficult. Therefore the basic assumption throughout this exercise is that we are teaching models
without knowing the probability distributions. Also, using several different machine learning approaches is
advantageous.

To help us with the task of fitting unknown distributions must use cost or error functions to minimize
problems with fitting a model. In many cases in the research the cost function is a summation of square
errors. However it is a fine line between over-fitting and under-fitting or model to our data set. To achieve a
best fit the model must be flexible. There is a trade off, between reducing the variance and a commensurate
increase of bias.

There are many ways to define such models, but the most important distinction is this: does
the model have a fixed number of parameters, or does the number of parameters grow with the
amount of training data? The former is called a parametric model, and the latter is called a
non-parametric model. Parametric models have the advantage of often being faster to use, but
the disadvantage of making stronger assumptions about the nature of the data distributions.
Non-parametric models are more flexible, but often computationally intractable for large data
sets.
Kevin Murphy1

We have seen that it is helpful to transform the raw data for several reasons. The first example was during
the Exploratory Data Analysis chapter that found skewness was found in three of the amino acid columns
or features. The skewness of these three features was greater than 2.0. Using common techniques such as
taking the square-root or taking the reciprocal or log transformations are common and easy to achieve.

Alternatively, transformations such as the kernel transformation is used strategically with Support Vector
Machines. Of the three examples of SVM, the SVM-Linear did not use a kernel transformation and its
performance while being good compared to the Logistic Regression had accuracy less than the SVM which
used Kernel transformations. It is possible to use any number of transformations such as the polynomial
and the radial-basis function. These alternatives allow non-linear decision boundaries.

1Kevin P.Murphy, Machine learning : a probabilistic perspective, 2012, ISBN 978-0-262-01802-9
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A Neural Network was set up and experimented with the protein data set. The NN was set to explore
a small set of the total possible experimental space. The number of neurons was tested between 10 and
20 with an interval of 2. It was surprising to see that the NN was fourth out of five in accuracy. It is
surprising due to the idea that two neurons should be somewhat equivalent to a decision boundary with 20
linear boundaries. However only one hidden layer was attempted. In the future more attention would have
been paid to Restricted Boltzmann Machines or other types of neurons which employ memory or types of
feed-back.

One additional strategy for building M.L. models is to use an Ensemble approach. Ensembles are very easy
to implement. For example, a model consisting of a Logistic Regression followed by SVM model could be
paired in the hope that it would achieve higher accuracies. This researcher also is aware of several other
M.L. methods that could be very useful with data that is between a finite range such as the percent amino
acid composition. The percent amino acid composition is by definition between 0 and 1. Also, this protein
data set has a rather small set of predictors or independent variables.

The impetus for this work was a paper published in 2007 by Xindong Wu, J. Ross Quinlan, et al.3 I found
this paper to be an amazing starting point since it ranked most common M.L. techniques. I chose my M.L.
methods with this paper in mind. Starting with the Logistic Regression as the entry point for understanding
Neural Networks and even other binary classifiers. One area that was not discussed here is Decision Trees
and CART. These use Entropy and Information theory as the ideas governing there behaviour. In depth
review of these M.L. approaches woould havve been an excellent background for Random Forests and all of
its spin-offs.

One item which was interesting was that the Principal Component Analysis had very little bearing on the
set of observations that were found as false-positives and false-negatives. This could be due to the fact that
the first two principal components which were chosen have very little bearing on how the alternative M.L.
methods produce their decision boundaries. It was an interesting experiment nonetheless, since it is thought
that PCA can reduce dimensional. The fact that 12 of the principal components were needed to achieve 90-
95% variance in the system. It was hoped that the 50% which was represented by the first two components
would be functional. This could also suggest that the decision boundary that best fits the protein data set
is not linear.

2Kevin P.Murphy, Machine learning : a probabilistic perspective, 2012, ISBN 978-0-262-01802-9
3Xindong Wu, J. Ross Quinlan, et al., Knowl Inf Syst (2008) 14:1–37, DOI 10.1007/s10115-007-0114-2
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knitr::opts_chunk$set(cache = TRUE)

Word To The Wise

• LEARN GIT. Get a Github account!

– Put Every computer program you write and Every stick of knowledge related to your work in a
clean format on Git. You will benefit from it in the long run. . .

• To Biologists and Biochemists (which I also consider myself), it is your task to become more familiar
with computer languages, computer concepts and math/statistics.

As of the writing of this booklet, Data Science and Bioinformatics are now centered around the computer
languages R and Python.

To many researchers in data science and bioinformatics the field now includes such languages as, in no
particular order,

• R
• Python
• Bash shell scripting

• SQL

• Julia

• Javascript
• RMarkdown, (This one is fun and easy)

Just start with one language

• Stick with it for a time and learn it. Learn the ins-and-outs of one language first.
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https://try.github.io/
https://github.com/
https://cran.r-project.org/
https://www.anaconda.com/
https://cran.r-project.org/
https://www.anaconda.com/
https://www.datascienceatthecommandline.com/
https://en.wikipedia.org/wiki/SQL
https://julialang.org/
https://www.javascript.com/
https://rmarkdown.rstudio.com/
https://www.markdowntutorial.com


Is R or Python better?

1. R & Python are both FREE,
2. Both have great integrated development environments (IDEs),

• RStudio is great & FREE,
• Spyder is also great & FREE,
• PyCharm
• Sublime
• Visual Studio Code
• Jupyter Notebook

3. Both languages have been around for > 20 years, therefore both have tons of FREE information &
tutorials on YouTube,

Install R & RStudio

NOTE: I use Ubuntu.

1. Go to: https://cran.r-project.org/

2. Choose R for your operating system.

3. If you are using Linux, I recommend that you download/install 4 R files.

1. r-base-core_#.#.#.*.deb (approx. 30 MB)
2. r-base-dev_#.#.#.*.deb (approx. 45 KB)
3. r-base_#.#.#*.deb (approx. 90 KB)
4. r-base-html-#.#.#*.deb (approx. 90 KB)

4. If you do have Linux you may try this video: How to install R.

5. Go to: https://www.rstudio.com/

6. From RStudio’s homepage click, Products then click RStudio from the drop-down menu.

7. Click the Download of the FREE version of RStudio Desktop

8. Click RStudio #.# to download a version for your machine

9. Have Linux? Try this - How to install RStudio.

10. If you are looking for instructions for Mac & Windows machines try:

• FreeCodeCamp

Load Libraries Used In This Project

If you are using Ubuntu/Linux you may need these Linux libraries first.

sudo apt-get install libcurl4-openssl-dev libssl-dev libxml2-dev build-essential

To install car & rgl

sudo apt-get install xorg libx11-dev libglu1-mesa-dev libfreetype6-dev
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https://www.rstudio.com/
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install.packages("rlang")
library(rlang)

load_or_install <- function(package_names) {
for(package_name in package_names) {

if(!is_installed(package_name)) {
install.packages(package_name,
repos = "http://lib.stat.cmu.edu/R/CRAN",
dependencies = TRUE)

}
library(package_name,character.only=TRUE,quietly=TRUE,verbose=FALSE)
print("OK")
}

}

load_or_install(c("doMC", "corrplot", "knitr", "caret", "tidyverse"))

load_or_install(c("ggplot2", "rmarkdown", "bookdown", "blogdown", "kernlab"))

load_or_install(c("e1071", "plyr", "RColorBrewer", "neuralnet", "ggfortify"))

load_or_install(c("rpart", "MASS", "tidyr", "ggplot2", "seqinr", "Boruta", "kableExtra"))

load_or_install(c("LogicReg", "randomForest", "foreach", "caretEnsemble"))

load_or_install(c("import", "dplyr", "stringr", "stringi", "readr", "tinytex"))

Calculate the amino acid compositions (AAC) and Di-peptide compositions
(DPC)

from .fasta formats, {Myoglobin, Non-Myoglobin}

Calculating the Amino Acid and Di-peptide composition of a protein string is a simple calculation requiring
the total amino acid length of the peptide or poly-peptide of interest and a count of substrings. Initially,
the command seqinr::read.fasta reads .fasta file formats and returns a list of proteins stripping away all
other information. Secondly, the command stringr::str_count() produces an integer value of the number
of substrings in a larger string, i.e. peptide.

For example, aa_nums[j] = str_count(peptide, col_titles[j]) / total_aa,

Where; aa_nums[j] is an array to saving values for later writing to file, peptide is the string to check,
i.e. protein of interest, col_titles[j] is the substring which is either a single amino acid or di-peptide.

Input: .fasta Output: .csv

Libraries

Libraries = c("stringr", "knitr", "seqinr")

for (p in Libraries) { # Install Libraries
library(p, character.only = TRUE)

}

opts_chunk$set(cache = TRUE,
warning = FALSE,
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message = FALSE,
align = "center")

Import uniprot-myoglobin.fasta - Read peptide lines

read_fasta <- function(file) {
listo_proteins <- read.fasta(file = file,

seqtype = "AA",
as.string = TRUE,
seqonly = FALSE,
strip.desc = TRUE)

return(listo_proteins)
}

file = "./00-data/ORIGINAL_DATA/uniprot-myoglobin.fasta"
myoglobins <- read_fasta(file)

Column_titles

column_titles = function() {
peptides = c("A", "C", "D", "E", "F",

"G", "H", "I", "K", "L",
"M", "N", "P", "Q", "R",
"S", "T", "V", "W", "Y")

# Add DIPEPTIDES column titles
di_titles = vector(mode = "character", length = 400)
k = 1
for (i in 1:20) {

for (j in 1:20) {
di_titles[k] <- paste(peptides[i], peptides[j], sep = "")
k = k + 1

}
}
aa_di_titles <- c("Class","TotalAA","PID", peptides, di_titles)
return(aa_di_titles)

}

col_titles <- column_titles()
col_titles

Write empty .csv

write_empty_csv <- function(protein_class = "C") {
col_titles <- column_titles()
file_name <- paste(protein_class, "_aac_dpc.csv", sep = "")
write.table(t(col_titles),

file_name,
sep = ",",
col.names = FALSE,
row.names = FALSE,
eol = "\n")
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return(file_name)
}

file_name <- write_empty_csv()

Calculate AAC and DPC values function

calc_aac_dpc <- function(peptide, protein_class = "C", i, file_name) {
aa_nums = matrix(0, ncol = 423)
###############################
# First column is class
aa_nums[1] = ifelse(protein_class == "C", 0, 1)
# Second column is total number of amino acids
total_aa = nchar(peptide)
aa_nums[2] = total_aa
# Third line is 'Protein ID', PID
aa_nums[3] = paste(protein_class, i, sep = "")
# Column 4:423 - Calculate AAC/DPC
for (j in 4:423) {

aa_nums[j] = str_count(peptide, col_titles[j]) / total_aa
}

write(t(aa_nums), file = file_name, append = TRUE, ncolumns = 423, sep = ",")
}

Run Myoglobin

# RUN Myoglobin
for (i in 1:1124) {

peptide <- myoglobins[[i]][1]
calc_aac_dpc(peptide, protein_class = "M", i, file_name)

}

Run Control / Human-NOT-myoglobin

• Import data - Read peptide lines

read_fasta <- function(file) {
listo_proteins <- read.fasta(file = file,

seqtype = "AA",
as.string = TRUE,
seqonly = FALSE,
strip.desc = TRUE)

return(listo_proteins)
}

file = "./00-data/ORIGINAL_DATA/uniprot-human+NOT+hemoglobin+NOT+myoglobin+random.fasta"
controls <- read_fasta(file)

Run Controls

for (i in 1:1216) {
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peptide <- controls[[i]][1]
calc_aac_dpc(peptide, protein_class = "C", i, file_name)

}

KEEP AAC ONLY FOR RAW DATA

file = "./00-data/aac_dpc_values/C+M_aac_dpc.csv"
C+M_aac_dpc <- read.csv(file,

stringsAsFactors=FALSE)
# View(`C+M_aac_dpc`)

# Select 1st thru 23rd variables
c_m_RAW_AAC <- C+M_aac_dpc[c(1:23)]

• To A Comma Delimited Text File

setwd("../00-data/02-aac_dpc_values/")

write.table(c_m_RAW_AAC,
file = "./00-data/02-aac_dpc_values/c_m_RAW_AAC.csv",
sep = ",",
row.names = F)

Transform {C, F, I} from c_m_RAW_AAC

library(readr)

file = "../00-data/02-aac_dpc_values/c_m_RAW_AAC.csv"
c_m_RAW_AAC <- read_csv(file,

col_types = cols(Class = col_factor(levels = c("0","1"))))
c_m_TRANSFORMED_AAC <- c_m_RAW_AAC

1. Transfrom C,F,I using sqrt(x)
2. Columns: C=5, F=8, I=11

c_m_TRANSFORMED_AAC[, 5] <- sqrt(c_m_TRANSFORMED_AAC[, 5]) # C
c_m_TRANSFORMED_AAC[, 8] <- sqrt(c_m_TRANSFORMED_AAC[, 8]) # F
c_m_TRANSFORMED_AAC[,11] <- sqrt(c_m_TRANSFORMED_AAC[,11]) # I

file = "./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv"
write_csv(c_m_TRANSFORMED_AAC,

file = file,
col_names = T)

Where To Find Help

1. Cheat Sheets
2. https://community.rstudio.com
3. https://www.reddit.com/r/RStudio/
4. https://R-bloggers.com/

6

https://resources.rstudio.com/rstudio-cheatsheets
https://community.rstudio.com
https://www.reddit.com/r/RStudio/
https://R-bloggers.com/


5. https://resources.rstudio.com/
6. Rpubs.com

• Rpubs.com contains R/RStudio notebooks and Markdown pages, VERY HELPFUL work from other
peoples online R documents. It is a way to learn from others and share your work. - Sign up, it is
FREE! then press: Get Started

NOTE: If you are interested in seeing what others have published search Google, Rpubs.com does not have
its own search function. In Google, Search: site:rpubs.com eda

Other sites:

1. Coursera
2. Stack Overflow
3. Quora
4. Roger Peng’s EDA
5. Bookdown - terrible yet necessary resource

The Lean Publishing (https://leanpub.com) company contains a library in the form of FREE down-loadable
books/pdfs. I recommend;

1. How to be a modern scientist1 by Jeffrey Leek2

2. R Programming for Data Science3 by Roger Peng4

3. Exploratory Data Analysis with R5 by Roger Peng
4. Data Analysis for the Life Sciences6 by Rafael Irizarry & Michael Love

Machine Setting & Session Info

Sys.info()[c(1:3,5)]

## sysname
## "Linux"
## release
## "5.3.0-40-generic"
## version
## "#32~18.04.1-Ubuntu SMP Mon Feb 3 14:05:59 UTC 2020"
## machine
## "x86_64"

sessionInfo()

## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
##

1https://leanpub.com/modernscientist
2http://jtleek.com
3https://leanpub.com/rprogramming
4https://simplystatistics.org
5https://leanpub.com/exdata
6https://leanpub.com/dataanalysisforthelifesciences
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## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] knitr_1.28
##
## loaded via a namespace (and not attached):
## [1] compiler_3.6.0 magrittr_1.5 tools_3.6.0 htmltools_0.4.0
## [5] yaml_2.2.1 Rcpp_1.0.3 codetools_0.2-16 stringi_1.4.6
## [9] rmarkdown_2.1 stringr_1.4.0 xfun_0.12 digest_0.6.25
## [13] rlang_0.4.5 evaluate_0.14
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