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A model for neural networks is presented in which the steady state firing frequency of a neuron 
is related to the amount of feedback in the network. One such network is shown to compute the 
square root function of the input to the network. 

Introduction 

Current research into the computational capability of neural networks makes 
great use of feedback to achieve such varied effects as learning (e.g. Hinton et al. 
[4] or Minsky and Papert [6]) or the onset of chaos (Ermentrout [3]). 

In this paper a model of neural networks will be presented in which the degree 
of feedback bears a strong relationship to the computational complexity of the net- 
work. Instead of considering the firing frequency of a neuron, we consider the firing 
ratio, i.e. the ratio of on pulses to off pulses, and then show how to construct net- 
works with one level of feedback which can compute the sum or product of input 
ratios and a network with two levels of feedback which can compute the square root 
of input (in the sense that the limit in time of the firing ratio of a neuron converges 
to the desired value). The measure of degree of feedback will be a modification of 
the cycle rank (as in Eggan [l]) of the underlying digraph of the network. 

In particular, it will be shown that if all input ratios are rational, then: for net- 
works of feedback level 1 or less, the output ratios are rational; for networks of level 
2 the output ratios belong to a field which can be obtained by a chain of quadratic 
extensions of the rationals; networks of level 3 can obtain ratios whose minimal 
polynomial over the rationals is unsolvable by radicals; and for every polynomial 
of degree n with rational coefficients which has at least one non-negative real root, 
there exists a net of level 2n which can obtain a ratio which is a root of the poly- 
nomial. 

The structure and operation of the neural networks is essentially that developed 
in [2] where it was also shown that the degree of feedback corresponded to the 
capability of the network considered as a finite state machine. 
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In Section 1 of this paper, preliminary notation, definitions, and theorems from 
algebra and graph theory are presented. 

In Section 2, the neural network model is developed along with the major results 
on output ratios. 

1. Preliminaries 

The following definitions are modifications of what appeared in [2]: 

Graph theory preliminaries 

1.1. Definition. Let G be a digraph. A strongly connected component of G is a sub- 
graph G’ of G such that for every pair of distinct vertiLzs ui, u2 of G’ there is a path 
in G’ from v1 to v2 and a path in G’ from v2 to vl. A section of G is a maximal 
strongly connected component. 

1.2. Definition. A strongly connected component S of a digraph G has circular feed- 
back of level 0 if it consists of a single vertex with no edges to itself, and circular 
feedback of level m >O if 

(i) S does not have circular feedback of a level <m, 
(ii) S consists entirely of disjoint strongly connected components S,, . . . , Sk and 

edges e12,e23, ...,qk-l)k9 H e such that for each i and j, eU connects a vertex in Si to 
a vertex in Sj, and 

(iii) for i= 1 . . . k, Si has circular feedback of level 5 m - 1. 
A digraph G has circular feedback of level i, denoted CF(G) = i, if i is the maximum 
of the circular feedback of the sections of G. 

Note that if a component S has circular feedback 1, then it consists of a simple 
closed path of individual vertices (components of level 0). 

It is not immediately clear from the inductive definition of circular feedback that 
every digraph has circular feedback of level k for some k. The following proposition 
shows however that this is indeed the case: 

1.3. Proposition. For every digraph, G, there exists an integer k such that G has 
circular feedback of level k. 

Proof. Consider a section S of G. If S consists of a single node with no edges to 
itself, then S has circular feedback of level 0. If there is an edge in S connecting 
vertex v1 say to vertex v2, then there must be a path in S from v2 back to 01. There- 
fore, S contains a simple closed path. Let Si be the subgraph consisting of the 
vertices and edges of one such path. If S1 is not all of S, then there must be another 
edge of S say from v3 to v4 where v3 is in Si . Then there must be a simple path from 
04 back to S1 which do 2 not go through a vertex of S, except at its termination 
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point. (If u4 is in Si, then the path consists of v4 with no edges.) Let S, be the sub- 
graph of S consisting of St, the edge from v3 to v4, and the path from v4 back to 
St. If S, is not all of s, then there must be an edge of s from v5 to &, say where 
us is in S,. As before, there must be a simple path from f& back to S,. Continuing 
in this manner, a sequence of subgraphs S1, S,, . . . is created which eventually ex- 
hausts all of S. Clearly, CF(St) = 1. Suppose it has been shown that CF(&)l k. 
Then, since S,, I consists of a component with circular feedback of level at most 
k in a circle with individual vertices (which are level 0), CF(& + I) 1 k + 1. Therefore, 
each section of G has circular feedback of some level and hence so does G. Cl 

1.4. Definition. Let G be a digraph. secgraph G is the digraph whose vertices are 
the set {S: S is a section of G} and whose edges are the set {(Si, $): there exists 
an edge in G from a vertex of Si, to a vertex of &}. height G is the maximum 
number of sections of maximum circular feedback level over all paths in secgraph G. 

Algebra preliminaries 

1.5. Definition. A chain of fields F,,, 2 F,,,_ 1 2 l 2 FO= Q (the rationals) is a radical 
tower if, for eachj= 1, . . . , m, there exists a positive integer, nj, an element ajE Fj_ 1, 

and a root aj of X”J -aj such that Fj=F _I(aj). If, forj= 1, . . ..m. the integer njs2, 
then F,,, is called a quadratic extension. of Q. F,,, is a real quadratic extension of Q 
if it is a quadratic extension for which aj is real for each j. The real quadratic 
closure of Q, denoted Qa, is the union of all real quadratic extensions of Q. 

1.6. Definition. Let F be a real quadratic extension of Q. Then rootrank is 0 if 
F= Q and rootrank is h > 0 if 

(i) rootrank is not less than h, and 
(ii) there exists a real quadratic extension F1 of Q with rootrank = h - 1 and 

F=F,(fi,& ,..., fi) where, for k=l,..., t, ak>OandakEF,. Let aEQR. Then 
rootrank = min{ h: a E F and rootrank = h}. 

In the following section we will construct nets that can ‘realize’ certain non- 
negative real numbers. It will be shown that if two such numbers can be realized 
by two nets, then there is a uniform way to construct nets which can realize their 
sum, product, or quotient. It would be extremely useful to also be able to realize 
their difference in a uniform way. It is easy to see that this is not possible as other- 
wise we could build a net which could realize the difference of the larger from the 
smaller and thus build a net which could realize a negative number. However, this 
is not a serious problem for quadratic extensions of the rationals, be :.dse differences 

can be rewritten using products, sums, and quotients. 
For example, 

f3-f2= l@+l/z). 
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The following result generalizes this example to any element of QR: 

1.7. Lemma. Let r> 0 E QR be such that rootrulrk(r) = n. Then r can be expressed 
as the sum, product, and quotient of positive elements of QR, each of which has 
rootrank in. 

Proof. If rootrank = 0, the result is trivial. For n z 1, there exists a real quadratic 
extension F, of Q such that rootrank = n - 1 and rE F= F,(fi, . . . , 6) where 

s1, . . . ,s,, are positive elements of Fl . Moreover, we may assume [F: Fj] = 2”. 
Enumerate the subsets of {fi, . . . , &}, V,, . . . , V, where m = 2”. Let Vr = 0. Let 
nr = 1, and for i=2,...,m let ni = the product of the elements of V;:. Then 
(3tiZ i= 1, l ** 3 m) forms a basis for F over Fl . Suppose r = ail, ni 1 + l -- + ai, nit where 
a@O, j= 1, . . . , t. Let W=Uj=1,,.., I f$ Wis contained in {fi, . . . . fi}. The proof 
will proceed by induction on n and the order of W. 

Suppose W= 0. Then r = al E Fl, rootrank(r)r n - 1 and the result follows by 
induction. Now suppose that 1 WI = k>O and the theorem has been established for 
IWIck. Let 6~ Wand suppose, for j=l,..., x, 6~ Kj and, for j=x+l,..., t, 

fifE y& 

Let 
rl =fSu(Cril&l + l *- +a&&) 

where /&= xii/& for j= 1, . . . ,x and 

Then r=rl +r2. For j= 1, . . . . x, let Uii be the subset of {fi, . . . , -&} such that the 
product of the elements in W’ equals &. 

Let 

w*=Uj=*,...,w”g 
and 

w2= Uj=,+ *,...,t Kj* 
Then I W,l and 1 W21 are each less than k. 

Let y = Ir,l and z= Ir21. i3y induction on k the lemma holds for y/l& and hence 
for y, and the result holds for z and so for y +z. 

Since neither y2 nor z2 contains a term involving J&, if y>z, then by induction 
on k the result holds for y-z = (y2 - z2)/(y+ z). (Similarly, the result holds if 
z>y*) 0 

2. The network model 

In some models of neural networks (such as perceptrons [a]), it is required that 
neurons fire synchronously. In others (such as Boltzmann machines [4]) the firing 
is of necessity asynchronous. 
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Here the networks will possess both asynchronous units and blocks of synchronized 
units. These synchronous components are included to allow for generality in func- 
tional capability. (More on this below.) There is one important restriction on syn- 
chronized blocks: the outputs from all neurons in a synchronous block all go to the 

same neuron which is not a member of a synchronous block (including the output- 
ting block). The synchronous block acts as a kind of preprocessor for this neuron. 

In the illustrations, a block of synchronized neurons will be enclosed in a rec- 
tangle. The connections between neurons, the axons, will be represented as lines 
from one neuron to another which terminate in solid dots (excitatory input) or open 
dots (inhibitory input) and can branch at their termination point to represent 
weighted input. Certain external axons will carry input to the net from the outside 
world. For an example, see Fig. 1. 

For an individual neuron, the rule for firing is the usual one; each neuron re- 
adjusts its firing state randomly in time (but with the same mean attempt rate) out- 
putting a pulse (output = 1) if at that time the difference between the excitatory and 
inhibitory input exceeds its threshold. Otherwise the output is 0. Neurons in a syn- 
chronized block individually fire by the same rule, however, they readjust their 
states at the same time, and input pulses to more than one neuron of the block from 
a neuron outside the block (or from external input) along a branching axon arrive 
at each of these neurons simultaneously. Moreover, output pulses leaving the block, 
simultaneously arrive at their destination. A synchronous block of this type leading 
to a neuron can compute the logical EXCLUSIVE OR function of two inputs which 
could not be computed without synchronicity. 

Consider first the case of a single neuron, n. By way of example, suppose n has 
threshold 2, and two excitatory input axons with frequencies fi, f2 respectively. 
(Frequency here and throughout represents the probability of firing at a given time.) 
This situation is shown in Fig. 2. Then n will fire only in the case when both input 
axons send a pulse to n at the same time. Therefore the output frequency of n is 

fifim 

Weight = +2 

Fig. 1. 
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And 

Fig. 2. 

OR 

Fig. 3. 

For the example in Fig. 3, n will fire when one or the other of the input axons 
send a pulse to n. Therefore, the output frequency is (1 -Jr)_& +fi( 1 -_&) +fifz. In 
general the output from n wil be a sum over products of input frequencies Lf;: or the 
difference between 1 and these frequencies, 1 -f;:. 
As in [7], we define the following two mappings. The first, x1, maps the vertices 

of Ik to Boolean expressions in the formal variables F!, . . . , Fk whereby each vertex 
is mapped to the conjunction && ..= & where & is Fi if the ith coordinate of the 
vertex is 1 and & is ! Fi, the negation of Fj, if the ith coordinate is 0. The second, 
7r2, maps Boolean expressions in F,, . . . , Fk to real expressions in the variables 
fi, . . . ,fk by replacing conjunctions with products, negations with subtraction from 
1, and each Fi with 3f;-. 

For example the vertex (l,O, 0,l) is mapped by n1 to the Boolean expression 
F,! F2! F3F4 which is mapped in turn by n2 to the real expression fi( 1 -f2)( 1 -f3)fd. 

Suppose that the neuron n receives input from k axons with firing frequencies 
fbf2, l -• 9 fk respectively. For each vertex b in Ik, let the ith coordinate of b represent 
the firing status of the ith input axon. Let B be the subset of vertices which represent 
an input which will cause the neuron to fire. Then the firing frequency of the neuron is 

Now consider the case where a neuron receives input from one or more neurons 
in a block of synchronous neurons. An example is given in Fig. 4. The output from 
nl is ol =fi f2 and from n2 is a2 =f2 f3. If nl and n2 were not synchronized, then the 
output from n would be CT = f, f2 f2 f3. Since they are synchronized the pulses of the 
f2 input required to fire nl and n2 arrive at the neurons at the same time. 

Fig. 4. 
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Therefore, CT =j’&&. In the general ease of two neurons, suppose nl receives in- 
puts fi, *-0, fk and n2 receives inputs from perhaps some of the same neurons as ni 
and in addition receives input from fk + ], . . . , fk + R1. Let 6 be the vertices of I” + m 
(where the first k coordinates of b represent the firing status of the inputs to N,, 
and the last m coordinates represent the firing startis of the additional inputs to 
n2). Let 4r (B2) be the set of vertices which rep sent inputs which cause nl (nt) to 

fire. Then the output frequencies, cxr, a~, and a satisfy 

Clearly, this can be generalized to the case where rz receives any number of inputs 
from the block or inhibitory inputs from the block or inputs from other blc.: S=S 
other neurons. The troublesome (but not intractable) case where one synchronous 
block receives inputs from another has been eliminated by the restriction on syn- 
chronous blocks mentioned in the introductory description of the model. The im- 
portant point is that at can be written as a sum of products of the input frequencies 
to the blocks feeding n and the input frequencies to n itself (or the difference 
between 1 and these frequencies). 

By keeping the firing frequencies of the input axons fixed, it is hoped that the net- 
work will eventually settle down into a steady state, i.e. the firing pattern of each 
individual neuron will converge to a fixed frequency. (A similar problem was 
studied in [4] and [5] where the connections between neurons were symmetric.) In 
general, equilibrium is not assured. But in any event, for a given set of input fre- 
quencies, there are only a finite number of possible values to which the output 
frequency of a given neuron could converge, and these possible convergent values 
are all roots of a polynomial determined by the net and the input frequencies. 

2.1. Theorem. Let N be a neural net. Suppose there are k input axons to N and they 
arefiring at the frequencies f 1, . . . , fk respectively. And suppose that in time the firing 

frequencies of each of the neurons of N converges. Then for each neuron n of N there 
exists an integer m and polynomials go(x,,+, . . . , xk), l m l , g&l, ~2, l l . , &) over Q 
such that the firing frequency of n is a root of the polynomial go(fi I , . . . , .&I + 

gl(fi,f& l --, fk)x+ l *- +g,(fbf2, -*a, fk)x 
m 

8 

The proof of 2.1 is greatly aided by the following: 

2.2. Lemma. There exist polynomials qO(xO, . . . , x,, yo, . . . , yl), . . . , q&o, l . . , x,, A-J, - . . 9 Y& 

over Q such that if al is a root of a polynomial go -I- glx + 0-0 + g,x’ over Q (gr + c) 
and a2 is a root of a polynomial ho + hl y + l + h,y’ over Q (ho, h, f 01, then al ~1 
is a root of 
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A similar result can be obtained for aI + a2, al - a2, and al c a2. 

Proof. The proof is a standard one from abstract algebra. The significance of the 
proof is the uniformity with which the polynomials qo, . . . , (Irl can be constructed. 
Let p = alaz. (The sum and difference of roots are handled similarly. The quotient 
is a slightly different case which is handled below.) Now 

and a similar equation exists for a& Let x0, . . . ,x,, ~0, .-. , yt , X, and y be real 
variables and let 

x= -x()/x,-x*/x*x- l ** -x,_ */x,x’- l, 

Y= -ye/y*-y,/y*y- l -• -y*- */y*y’-? 

Note that if gi (hi) is substituted for Xi (Yi) for each i and a1 (a2) is substituted for 
x (y), then we obtain the equation for a; (a;) above. 

ConsiderthesetofproductsP={x’yi:i=O,...,r-l,j=O,...,t-l}(Fixanorder- 
ing on this set, 1,s .*.,x’- ry’-r .) Consider the products of xy with each element in 
P. By substituting the expressions for X and Y for each occurrence of xr or y* 
respectively whenever they occur in these products, we see that each of these pro- 
ducts can be written as a linear combination of the elements of P with coefficients 
being rational functions of x0, . . . ,x,., yo, . . . , y,. Let M be the rt x rt matrix where 

Mj = the coefficient of the ith element in P in the expansion of the product of the 
jth element of P with xy. Let u be the rt-dimensional row vector [la, . . . a[-‘a:-‘]. 
And let Ml be the matrix formed by substituting go, . . . ,g,, ho, . . . , h, for x0, . . . ,x,, 

Yo, . . ..yt in M. 
Then PO = uM, , and so fl is a root of the characteristic polynomial of Ml. Since 

this polynomial can be determined by substituting the gi’S and hi’s for the Xi’s and 
yj’s in the characteristic polynomial of M, the result follows. 

In order to construct polynomials for the quotient, we first note that l/a2 is the 
root of hoyt+h,yt-‘+ l .0 +h, and then use the method above with the product 
ap 1/a2. Cl 

Proof of 2.1. The proof is by induction on the number of internal axons in N. Sup- 
pose first that there are no internal axons. Then N consists of a collection of in- 
dividual neurons with no connections between them. From the discussion preceding 
Theorem 2.2, the output from each neuron can be expressed as in (1) and so the out- 
put frequency is a root of a linear polynomial of the type desired. 

Now suppose the network has m>O internal axons and the theorem has been 
proven for less than m. Let n be a neuron of N and suppose first that there is an 
internal axon from n to a neuron nl (possibly itself). Construct a new network N’ 
by removing this axon and creating a new external axon leading to nl . Let the firing 
frequency of this new input be f. By induction, there exist an integer P and poly- 
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nomials g&r, . . . , x, + Y), . . . 9 g&1 , . . . ,xk, y) such that the output from n in N at 
equilibrium is a root of 

Then the output a! from n in N satisfies O=go(fi, . . . . fk#)+ l *.+gp(fir . . . . fks&!P 
and the result follows. 

Now suppose there are no axons leading from n to another neuron. There are two 
cases to consider. First, suppose there are no synchronous blocks of neurons \i;virh 
output axons leading directly to n. Let n I, . . . , n, be the neurons which have output 
axons leading to n. By the argument in the preceding paragraph the output frequen- 
cies from each of the nj’s satisfy the theorem. But the output frequency from n can 
be written as a sum similar to (1) with the outputs from the nj’s included with the 
A.% as inputs to n, i.e. the output from n is the sum and difference of products of 
frequencies satisfying the theorem. The result follows immediately from Lemma 2. 

Finally suppose that there are synchronous blocks with outputs to n. The neurons 
which feed each of these blocks satisfy the theorem (since there is an internal axon 
of the network coming out of each of them, a case considered above) and so as in 
the discussion of synchronous blocks preceding 2.1, the output from n is again 
determined by sums of products of frequencies satisfying the theorem and so by 2.2 
the result follows. •l 

At this point the focus of discussion will change from the frequency of firing to 
the firing ratio i.e. the ratio of on pulses to off pulses. The change may seem in- 
significant since if f is a frequency and r is the corresponding ratio, then 

f r 
r=l_, and f=- 

l+r’ 
(2) 

But there are some important advantages and disadvantages to this change. The 
major disadvantage is that when considering frequencies, it is a simple matter to 
construct a net which yields the product of two frequencies, since the product results 
from the logical AND function. (See Fig. 2.) With ratios it will still be possible to 
compute the product of ratios in a uniform way, but not quite as easily. (More on 
this below.) The other disadvantage, a caution actually, is that a frequency of 1 

yields an undefined ratio. The advantages of considering ratios are: 
(i) It will be shown that sums can be computed uniformly. Since frequencies must 

be in the range from 0 to 1, there can be no way to compute sums uniformly because 
if there were, then the method could be used to compute the sum of two frequencies 
each greater than + yielding a result greater than 1. 

(ii) With ratios, the quotient is a simple matter. In fact, negation, which changes 
a frequency f into 1 -f, changes a ratio r to 1 /r. Quotients will be very handy when 
considering the minimal extension field of Q containing the possible values that a 
network can produce. 

In Theorem 2.1, a polynomial was constructed whose roots were the possible out- 
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put frequencies from a neuron at equilibrium. The following defines the correspon- 
ding polynomial for ratios in place of frequencies. The polynomials are produced 
by substituting (2) into the polynomials of 2.1. 

2.3. Definition. Let N be a neural net with k input axons. Let n be a neuron in N. 
Then the equilibrium polynomial for N at n, denoted by Et(x), is the manic poly- 
nomial of minimal degree with coefficients in Q(r,, . . . , rk) such that if N is receiving 
input ratios rl, . . . , rk, each 20, then the steady state output ratio from n is a root 
of the polynomial. (Where N is understood, E:(x) will be abbreviated E,(x)). 

2.4. Definition. Given N, n, and Et as above, the structural equilibrium poly- 
nomial for N at n, denoted by S:(x) (or S,(x) when N is understood) is derived 
from E:(x) by assuming all input ratios (or frequencies) are 0. 

The main results of this section concern the roots of Et and S: under restric- 
tions on the amount of feedback in N. The degree of feedback in the networks will 
be measured by considering the circular feedback level of the underlying digraph of 
the network. 

2.5. Definition. Given a neural net N, the underlying directed graph of N, is the 
digraph G(N) with vertices V= {n: n is a synchronized block of neurons or n is 
a neuron of N not belonging to any synchronized block of neurons} and E= 
{(n#, nz): there exists an axon from nl to nz}. 

2.6. Definition. The class of rank k networks with circular feedback, denoted by 
CFNk, is the collection of networks N such that CF(G(N)) = k. 

CFN, 

Rank 0 networks have no feedback whatsoever. Input pulses enter certain neurons 
and pass through the network in one direction. 

2.7. Theorem. Let N be a network such that CF(G(N)) = 0. Let n be a neuron of 
N. Then E,,(x) is linear and S,(x) =x or is undefined. 

Proof. The proof is by induction on h = height G(N). If h = 0, then the network con- 
sists of a single neuron or a collection of individual neurons with no axons between 
them. The output from a neuron n can be expressed as in (1) and the result for En 
follows immediately. With inputs of all O’s the output frequency from n is either 
0 or 1. In the former case, S,(x) =x and in the latter, it is undefined. For h >O, a 
neuron n at the end of a path of length h in secgraph G(N) receives inputs from 
external axons or from neurons at the end of paths of length ch. By induction, the 
equilibrium polynomial at these neurons is linear so that the output from each 
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neuron (that is, the input into n) is a rational function of the input ratios and ~0 
using (1) again, E,(x) is linear. S,(x) will be defined only if the outputs from each 
of these neurons is 0 in which case the result holds. Cl 

Though level 0 nets do not possess much computational power, there is one net 
which dces compute the reciprocal function of an input ratio. (This is the negation 

function of the input frequency.) This net is shown in Fig. 5. If the input frequency 
is f, then the output frequency is g = (1 -f ). Let f = r/(1 + r) and s = g/( 1 -g), then 
s= l/r and so E,,(x)=x- I/r. 

CFN, 

At rank 1, since each section of G(N) consists of a simple closed path of neurons 
(or blocks), there is a limited amount of feedback in the net. It turns out that 
E:(x) and S:(x) are still linear, but that S:(x) is sufficiently general so that every 
non-negative rational number can be the root of S, for some N and n. 

Moreover, level 1 nets have the capacity to compute the sum and product func- 
tions of input ratios. 

2.8. Theorem. Let N be a network such that CF(G(N)) = 1. Let n be a neuron of 
N. Then E,,(x) and S,,(x) are linear. 

Proof. Consider a section S of G(N). Each vertex of S represents either a neuron 
or a block of synchronous neurons of N. Since blocks cannot lead to each other or 
themselves there must be at least one vertex which represents a single neuron. Let 
1M be the subnetwork of N which is represented by S and let m be one such neuron. 
Consider the axons coming from other neurons in N into M as external inputs to 
M, and along with the actual external inputs to M suppose there is a total of k inputs 
with frequencies fi, . . . , fk. A new network A4’ can be formed by removing the axons 
that exit m and go to the next neuron (or block) in S and replacing them with new 
external inputs. (If the next vertex after m in the closed path represents a single 
neuron, then there will be only one axon to remove. If the next vertex is a block, 
there may be more than one axon, but all pulses on these axons arrive at the block 
simultaneously.) Then M’ is a simple linear path and the new input(s) which was 
created enters it at only its first neuron (or block). But then the products in (I) when 

Fig. 5. 
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computed for each neuron (or block) in the path in turn will contain at most one 
factor of the new input. ThereZore, the output from m in A4’ can be expressed as 
a linear function of this new input, that is, if f is this new input and j3 is the output 
from m in W, then p=af + b where a and t)~ Q[fi, . . . , fk]. Then if (Y is the output 
from m in A& then CT = aa! + b. Substituting a = r/(1 + r) shows that E$! is linear. 
Once the output from 1y1 is known, the output from each of the other neurons in 
A4 can be computed in turn by a series of computations like (1). Therefore, the result 
follows for each neuron in N. Moreover, since the output from each section in G(N) 
can be viewed as input to subsequent sections in secgraph G(N), the result holds for 
all of N. Cl 

2.9. Theorem. There exist rank 1 networks NI and N2 such that for all rl, r2, if rl 
and r2 are used as input ratios, then N1 produces rl + r2 and N2 produces rlr2 as 
output ratios. 

Proof. The networks N, and N2 are shown in Figs. 6 and 7. In N,, 

h = f,(l -f2> +f2(1 -fd +fifih* 

Then 

and so 

h fit’ -fi)+f2tn -f,> 
= 

h/(1 -h) = fU -fS+fSl -fi> 

1 -f,f2 - (flu -f2) +f2Cl -fd 

fit1 -f2) +f2U -fd 
= 

(1 -fN -f2) 

=rl +r2. 

Sum Product 

Fig. 6. Fig. 7. 
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In N2, 

and so 

h =fif2 + h(fdl -f2) +f2(1 -ft)) 

fif2 

= 1 - (fdl -f2) +f2(1 -f,)) 

h fif2 
~=(=--f,)(*_f,)=r,~2- o 

2.1& CorollarY l For every non-negative rational number a there exists a rank 1 net_ 

work N containing a neuron n such that St(x) has Q! as a root. 

Proof* The network in Fig. 8 produces 1 as its output ratio. Then using Theorem 
2.9 repeatedly and the negation function of Fig. S, any positive integer, any reci- 
Procal Positive integer, and any positive rational can be produced. 0 

CFN, 

At rank 2 the possible ratios will be extended from the rationals to include real 
quadratic extensions of the rationals. It will be shown that if cxr.0 E QR, then there 
exists a rank 2 net which produces a! as an output ratio. In particular, there exists 
a level 2 net which can compute the square root of every input ratio. This net will 
be exhibited first. 

2.11. Theorem. There exists a CFN2 net N with a single input ratio r and a single 
neuron n such that E:(x) =x2 - r. That is, for every non-negative real number r 
which is used as an input to N, 

R = fi is an output ratio from N. 

proof. Consider the net in Fig. 9. The neuron n will fire if and only if there is no 
pulse on the inhibiting feedback axon along with a pulse on either the inPut axOn 
or the other feedback axon or when there is a pulse on the inhibiting feedback axon 
and on both the other axons. (It is important to note here that pulses on the two feed- 
back sons arrive independently in time of each other; they are not synchronized.1 

Fig. 8. 
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square Root 

Fig. 9. 

Therefore, the output frequency from n is g = (1 - g)[g +f-fsl + g[fg], whkre f is 
the input frequency. If r is the input ratio, i.e., f = r/( 1 + r) and s is the out!.‘lut ratio 
from n, i.e., g=s/(l +s), then 

s 1 s r 

( 

sr S sr 
-=- --_++- 

> ( 
+- 

l+s l+s l+s l+r (l+s)(l+r) l+s (l+s)(l+r) > 

and so 

s(1 +s)(l +r)=s(l +r)+r(l +s)-sr+ssr 

which reduces to s* =r. III 

Using 2.11 it is now possible to construct a network which receives an input 
frequency f and obtains output frequency g where g=fl Let r be the ratio cor- 
responding to f. Using sums, products, and the square root, it is possible to con- 
struct a net with output ratio s = I/-+ r. But then the output frequency g = 
s/(1 +s)=fl. 

Let us now turn to the question of what ratios are possible as outputs of level 2 
nets. Using 2.9 and the negation function, it is possible to produce the sum, product, 
or quotient of ratios. Using 2.11, it is possible to produce square roots. It is not 
possible to uniformly construct a net which produces the difference of two ratios 
because otherwise it would be possible to realize a negative difference. However, by 
1.7, differences can be rewritten using sums, products and quotients. This leads to 
the following: 

2.12. Theorem. If al 0 E QR, then a can be produced as an output ratio of a CFN2 
net. 

Proof. The result follows immediately from 1.7, 2.9, and 2.11. Cl 

TO show that output ratios of level 2 nets necessarily belong to QR, we will need 
the following lemma which takes a closer look cf level 1 nets: 

2.13. Lemma. Let N be a network consisting of a simple closed path of neurons (or 
blocks). Letf =ft, f2, . . . , fk be the external input frequencies to N. Let n be a neuron 
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of N. Let r = f/(1 - f) and let the output frequency from n be g = s/(1 + s). Then 

Ar+B 

s=cr+D 

where A, B, C, and D are polynomials in f2, . . l , fk and A, B, C, DZ 0. 

Proof. The result follows from a closer inspection of the sum of products in (1). 
Since these sums represent frequencies, it should be noted that 0 s such sums s 1. 
Suppose the neuron following n in the circle has output cy. Write a! as a sum of pro- 
ducts, and separate the terms of this sum which involve g from those involving 1 -g. 
Then 

cr=ag+b(l -g) 

where a and b are sums like (1) in fi, f2, . . . , fk and are linear in f and (1 -f). 
Now suppose a! is fed into another neuron along with other inputs and the output 

is /3. Then 
p=ccll+d(l -(r) (Osc,ds 1) 

=c(ag+ b(l -g))+d(l -(ag+ b(1 -g))) 

==acg+bc(l -g)-adg-bd(1 -g)+d-dg+dg 

=eg+ h(l -g) 

where e=a(c-d)+d and h=b(c-d)+d. 
If c-ds0, then since Ola, we have e-cdl 1, and if c-d>O, then since al 1, 

we have e 5 CI 1. Since e = ac + d( 1 - a), 0 I e. Similarly, 0 5 h I 1. Moreover, since 
a and b are linear in f and (1 -f) and c and d involve only external inputs, it follows 
that e and h are linear in f and (1 -f ). Continuing in this way around the simple 
closed path yields 

g = (V+j(l -f ))g + (kf + m(1 -f ))(1 -g) 

kf+m(l-f) 
= 1 -(if+j(l -f)+(kf+m(l -f))) 

where i, j, k, m are sums of products involving f2, . . . , fk (and their differences with 
1) and Osi, j,k,mll. Then 

s(1 -(if+j(l -f))+(kf+m(l -f)))=(kf+m(l -f))(s+ 1) 
and so 

kf+m(l -f) 
‘= 1 -(if+j(l -f>> 

kr+m 

= r+ 1 -(ir+j) 
kr+m 

= (1 -i)r+(l -j) 

and the result follows. 0 



44 G.S. E&man 

2.14. Theorem. Let N be a CFN, network and let S be a section of G(N) such that 
CF(S) = 2. Let M be the subnetwork of N represented by S (with inputs to M being 
from external iputs or neurons not in M). Let m be a neuron in M. Then E:(x) has 
degree at most 2. 

Proof. S consists entirely of disjoint components, each of which is either a CFNo 
component (i.e. representing a single neuron (or block)) or a CFNr component (i.e. 
representing a simple closed path of neurons (or blocks)), and edges connecting 
these components in a simple closed path. (See Fig. 10.) At least one of the com- 
ponents is a CFNr component, S. The edge from S to the next (possibly itself) 
component in the closed path in S must represent an axon from an individual neuron 
m and not a block. Otherwise, output from the block would go to both the neuron 
in the simple closed path in S and to a neuron outside S and by definition, output 
from a block feeds a single neuron only. Form a new network M’ by removing the 
axon represented by this edge and replacing it with a new external input axon with 
input ratio r. Let the output from m in M’ be s. M’ is then a linear chain or CFNo 
and CFNr nets. Suppose the components in the chain in order are Sr, . . . , S, = S. Let 
nl be the neuron in Sr whose output leads to S2. Let s1 be he output from nl . Then 
by Lemma 2.13, si = (A ir + B,)/(CI r + L+) where A 1, B1, Cl, D1 are polynomials in 
the other inputs to M’. s1 along with external inputs are then the input into S, and 
then by 2.13 again, the output from a neuron n2 in S2 is 

s2= 
642Sl B2) 

(C,s1+~2> 

[(A24 +B2W+(A2Bl +W,)l 
= KC24 +DzW+C24 +Dz4)1 l 

r* . . 
I P . . . . . \ si$ 

. m . . . . 3 

Fig. 10. 
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Continuing in this way yields s = (Ar + B)/(Cr + D) where A, B, C, and D are the 
desired polynomials, and setting s equal to r yields the result for &y(x). Fixing r as 
a root of this polynomial and using 2.13 again, yields the result for each neuron of 
Sr and continuing in this way into each component of M yields the result for all 
neurons of M. Cl 

2.15. Corollary. If a is an output of a level 2 net, then a E QR. 

Proof. Level 2 nets consist of acyclic networks of sections which are of level 2 or 
less. By 2.14, the output ratios of each section are roots of quadratic polynomials 
of the input ratios to the section. The result follows by induction on the number of 
sections along each path in the network. Cl 

Rank 3 and above 

At rank 3 we are able to extend the set of possible ratios a great deal. In par- 
ticular, the ratios need not be roots of polynomials which are solvable by radicals. 

2.16. Example. Consider the polynomial p(x) =x5 - 2x3 - 2-u - 2. By Eisenstein’s 
criteria, p(x) is irreducible over Q. Since p(- 1) > 0 and p(0) < 0 and p’(x) = 

5x4- 6x2 -2 has only two real roots, p(x) has exactly 3 real roots. Therefore, the 
Galois group of the splitting field forp(x) over Q contains a 5-cycle (since the degree 
of p = 5) and a transposition (complex conjugation) and so is the full symmetric 
group S, and is unsolvable. Moreover, S:(x) =p(x) for the CPN3 net illustrated in 
Fig. 11. In the illustration, ratios are written above the axons. 

It is left as an open question whether or not level 3 nets (or any given level for 
that matter) are sufficiently general to produce every positive real number which is 
algebraic over the rationals as the output ratio of some net. The author conjectures 
that this is not the case. The final result here shows that roots of polynomials of 
degree k can easily be realized at level 2k. 
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2.17. Theorem. Let ar> 0 be a root of a polynomial p(x) of degree k with rational 
coefficients. Then there exists a net NE CFN, with m z~2k containing a neuron n 
such that cy is a root of S:(x). 

proof. If (r is rational (i.e. k= 1), then the result follows from 2.10. Assume M is 
not rational. Factor out the highest power of x common to all terms of p(x) and 
multiply by - 1 if necessary, so that the constant term is positive. Let the resulting 
polynomial be pi(x). Then p&x) = q(x) - r(x) + a0 where q(x) and r(x) have no con- 
stant terms, all coefficients of q(x) and r(x) are non-negative, and a0 is a positive 
rational number. Moreover, since a! AS positive, r(x) #O. Then a! is a solution to the 
equation x = s(x)/t(x) where s(x) = q(x) + a0 and t(x) = r(x)/x. Suppose that s(x) = 
aixi + l == + ao. Consider the CFNt net in Fig. 12(a). The net uses the level 1 nets 
from 2.9 to produce products and sums so that with input r, the output is s(r). A 
similar net can be constructed to produce t(r) and as in Fig. 5, with one extra 
neuron, l/t(r). The net in Fig. 12(b) combines these two nets in the product 
s(r) l 1 /t(r) with the result becoming the new value for r. It remains to be shown that 
the CF level of this net is at most 2k. 

Consider first the subnet consisting of the neuron n and the path to itself on the 
horizontal lines through each of the upper row of boxes shown. This is a CFN2 net 
since each box is a CFNt subnet. Each of the axons leading from n to a product 
box adds at most one to the level of the net. This follows immediately from the 
definition of circular feedback because removing each axon in turn reduces the net 
to a single component at a lower level. The path from n through nl and horizontally 
through the lower row of boxes again increases the level by (at most) one (since the 
upper half of the net is a single component and the chain through the lower half 

a 

sum sum sum s(I)* 

&if 

. 

b 

Fig. 12. 
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produces a simple closed path from this component through CFNo and CFN, sub- 
nets and back to the upper component again). As before, each of the axons from 
IP to the product boxes in the lower row adds one to the level. Since the degrees of 
s(r) and of t(r) are rk with one of them being less than k, the net has rank at 
most 2k. 0 
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