
Support Vector Machines For Binary Classification

mcc

3/13/2020

Support Vector Machines for Binary Classification

“Support Vector Machines should be in the tool bag of every civilized person.”
Patrick Henry Winston 1

Introduction

Support Vector Machine (SVM) learning is a supervised learning technique that may be used as a binary
classification system or to find a regression formula. Support vector machines are a “maximum margin
classifier. SVM finds the separating hyperplane with the maximum margin to its closest data points.” 2

Although there are many mathematical approaches to solving SVM, many of which include kernels, let us
first describe the Linear SVM used for binary classification. Consider a situation where we need to distinguish
between two circumstances, or classes.

In an imaginary biochemistry laboratory, researchers discover a novel enzyme found in different tissues
throughout the human body. Biochemists purify the enzyme from several cadavers and several different
tissue types. Literature suggests that this newly found enzyme has two isozymes, 1) Alpha has a high
reaction rate and 2) Beta has a lower reaction rate. It now seems like a simple task to learn which isozymes
you possess. Carry out kinetic enzyme analysis on the purified samples then attempt to classify them.

Once you have carried out the kinetic analysis you then determine the Michaelis–Menten constant, KM . The
KM constant is plotted on a single axis and produces the graphic below.

Linearly Separable

In test #1, we can see the two isozymes can easily separated by activity alone. Figure 1 demonstrates that
the data is linearly separable. The dataset is linearly separable if a single straight line can partition the data.
In more general terms, “if the classes are linearly separable, it can be shown that the algorithm converges to
a separating hyperplane.” 3 As Cortes and Vapnik indicate the hyperplane is the decision boundary of any
high dimension feature space, considering a hyperplane has one less dimension than its n-dimensional space.

Incidentally, in Patrick Winston’s lecture on SVM, he calls SVM the “widest street approach.” 4 Why does
Professor Winston use this term? There are many possible streets which can be traced but the goal is to

1Patrick Henry Winston, 6.034 Artificial Intelligence, Fall 2010, Massachusetts Institute of Technology: MIT OpenCourse-
Ware, http://ocw.mit.edu/6-034F10

2Nika Haghtalab & Thorsten Joachims, CS4780/5780 - Machine Learning for Intelligent Systems, Fall 2019, Cornell Univer-
sity, Department of Computer Science, https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html

3Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning; Data Mining, Inference, and
Prediction, https://web.stanford.edu/~hastie/ElemStatLearn/, 2017

4Patrick Winston, 6.034 Artificial Intelligence, Fall 2010, Massachusetts Institute of Technology: MIT OpenCourseWare,
http://ocw.mit.edu/6-034F10

1

http://ocw.mit.edu/6-034F10
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html
https://web.stanford.edu/~hastie/ElemStatLearn/
http://ocw.mit.edu/6-034F10

0 1 2 3 4 5 6

Test #1; Enzyme Rates, Km

Km (rate of reactant consumption per unit time)

Figure 1: Is linearly separable data.

find the widest street. Many streets may be drawn in our example, but requiring the widest street leads to
one. In fact, “an optimal hyperplane is here defined as the linear decision function with maximal margin
between the vectors of the two classes.” 5

6

Adding the prosaic phrase widest street smartly leads to the idea that a widest decision boundary also has
the greatest ability to generalize.
7

However in real life, linearly separabale data is rarely the case. Most often the activities are mixed as shown
in test #2.

Understanding the hyperplane equation

If we were trying to find:

1
2Ŵ (X⊕ − X) (1)

Where Ŵ =
(

x1
||x|| ,

x2
||x||

)
and X⊕ and X	 represent data points that are labeled either positive or negative.

Suppose that X⊕ and X	 are equidistant from the decision boundary:
5C. Cortes, V. Vapnik, Machine Learning, 20, 273-297, 1995
6C. Cortes, V. Vapnik, Machine Learning, 20, 273-297, 1995
7Allison Horst, University of California, Santa Barbara, https://github.com/allisonhorst/stats-illustrations

2

https://github.com/allisonhorst/stats-illustrations

Figure 2: Vapnick SVM Diagram

Figure 3: P Values Schematic

3

0 1 2 3 4 5 6

Test #2; Enzyme Rates, Km

Km (rate of reactant consumption per unit time)

Figure 4: Is not linearly separable data.

Where a represents the region above the hyperplane;

WTX⊕ + b = a (2)

and where −a represents the region below the hyperplane or decision boundary.

WTX	 + b = −a (3)

Subtracting the two equations:

WT (X⊕ − X) = 2a (4)

Divide by the norm of w:

ŴT (X⊕ − X) = 2a
||W ||

(5)

4

8

Soft Margins

In the case above, the activities overlap hence determining which isozyme is Alpha or Gamma is more
difficult. In 1995, C. Cortes and V. Vapnik introduced the mathematics and ideas for “Soft Margins” or
non-separable training data.9

The same is true of an n-dimensional system.
The first mention of an SVM like system is by Vapnik and Lerner in 1963, where the two described an
implementation of a non-linear generalization called a Generalized Portrait algorithm.10 As research has
progressed, the types and complexity of SVM implementations have grown to encompass many circumstances.
The ability of SVM to deal with different problems and handle different decision boundary shapes has made
SVM a potent tool.

Kernel Use

For example, this experiment has chosen to investigate three possible decision boundary shapes for the
two-class protein data. The three mathematical constructs which will be tested are:

1. Linear hyperplane (also known as “plain-vanilla”),
2. Curvilinear or polynomial hyperplane and,
3. A radial basis function hyperplane,
4. Sigmoidal.

Linear: K(x, y) = wTx+ b

• The linear kernel does not transform the data at all.

Three common SVM kernel formulae investigated are:
8Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning; Data Mining, Inference, and

Prediction, https://web.stanford.edu/~hastie/ElemStatLearn/, 2017
9C.Cortes, V.Vapnik, Machine Learning, 20, 273-297, 1995

10V. Vapnik and A. Lerner, 1963. Pattern recognition using generalized portrait method. Automation and Remote Control,
24, 774–780

5

https://web.stanford.edu/~hastie/ElemStatLearn/

Polynomial: K(xi, y) = (γ xT
i xj + r)d, γ > 0

• The polynomial kernel has a straightforward non-linear transform of the data.
• Such that γ, r, and d are kernel parameters.

Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖ xT
i − xj ‖2), γ > 0

• The Gaussian RBF kernel which performs well on many data and is a good default

Sigmoidal: K(x, y) = tanh(γ xT y + r), γ > 0

• Incidentally, The sigmoid kernel produces an SVM analogous to the activation function similar to a
[perceptron] with a sigmoid activation function.11

It is essential to note, at this time, there are no reliable rules for which kernel, i.e., boundary shape, to
use with any given data set.

11(https://data-flair.training/blogs/svm-kernel-functions/)

6

https://data-flair.training/blogs/svm-kernel-functions/

Plots of 4 common SVM boundary shapes:

−4 0 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Linear Case

x

y

−4 0 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Polynomial, d=2

x

y

−4 0 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

RBF Case

x

y

−4 0 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Tanh Case

x

y

SVM-Linear Intuition

The simplest form of SVM utilizes a hyperplane as a separating element between the positive and control
protein observations. This type of implementation is denoted as SVM-Linear (svm-lin) in this report. Here
the mathematics is more easily described and can even be shown with a simple 2-dimensional graphic.

7

12

Given a set of labeled pairs of data:

{(X1, y), ..., (Xm, y)}, y ∈ {1, − 1}, where Xm x n ∈ < (6)

For mathematical convenience, the labels are a set of values 1 or -1.

Therefore, we may write.

f(xi) =
{

x ≥ 0; y = 1
x < 0; y = −1 (7)

This is no different than is currently done in beginner level algebra. As is shown in the example below, the
same is true for higher-dimensional problems.

Will be described and calculated in more detail in this report. However, there are alternative implementations
of SVM.

In this experiment, three implementations of SVM have been used. The three are denoted as SVM-Linear
(svm-lin), SVM-Polynomial (svm-poly), and SVM-Radial Basis Function (svm-rbf).

The switches in the R/caret software are easy such that one can use a number of kernels by changing the
name of method..

with differing amounts of hyperparameters to modify. The intuition for the svm-poly and svm-rbf is also
fairly straightforward. Instead of using a linear hyperplane to bisect the hi-dimensional space, which describes
the decision boundary, the mathematics for a polynomial curvilinear function or a radial basis function may
be utilized.

Yet another measurable difference that was investigated in this experiment was the use of a kernel trans-
formation. It is conceivable to envision a hyperplane with no transformations utilized. Alternatively, the
kernel transformations of original data can be used to increase the ability of the function to differentiate
between positively and negatively labeled samples. A mathematical treatment can be found by Christopher
Burges.13

As the usage of SVM grew, different issues presented problems for defining and coding the decision boundary
were found. In the simplest case, the data points that sit along the support vector are nicely and neatly on
the positive or the negative side. This is known as a hard margin which delineates the decision boundary.
In reality, the decision boundary may include positive or negative datapoints that sporadically cross the
boundary. In the circumstance where the decision boundary has similar points on either side, a penalty may
be enlisted to deter the mathematics from choosing a boundary that includes too many misfit datapoints. In
1995, Support Vector Machines were described by Vladimir Vapnik and Corinna Cortes while at Bell Labs
dealt with the soft-margin that occurs in the above situation.14

SVM is a non-parametric approach to regression and classification models.

What is Non-parametric?

For that matter, what is parametric learning and models. Just as we have learned that machine learning
models can be supervised, unsupervised, or even semi-supervised another characteristic between machine
learning models is whether they are parametric or not.

In Webster’s dictionary 15 states a parameter is

a. Estimation of values which enter into the equation representing the chosen relation
12Vladimir Vapnik & Corinna Cortes, Machine Learning, 20, 273-297, 1995
13Christopher Burges, Tutorial on Support Vector Machines for Pattern Recognition, D.M. & Knowl. Dis., 2, 121-167, 1998
14Vladimir Vapnik & Corinna Cortes, Machine Learning, 20, 273-297, 1995
15Webster’s third new international dictionary, ISBN 0-87779-201-1, 1986

8

b. “[An] independent variable through functions of which other functions may be expressed”,
Frank Yates, a 20th-century statistician

Another excellent explanation of this idea includes;

Does the model have a fixed number of parameters, or does the number of parameters grow with
the amount of training data? The former is called a parametric model, and the latter is called a
non-parametric model. Parametric models have the advantage of often being faster to use, but the
disadvantage of making stronger assumptions about the nature of the data distributions. Non-
parametric models are more flexible, but often computationally intractable for large datasets.16

Since Support Vector Machines are best described as a system where increasing the amount of training data,
the numbers of parameters may grow as well. Therefore SVM is a non-parametric technique. Considering
this idea in more detail, the estimation of the decision boundary does not entirely rely on the estimation of
independent values (i.e., the values of the parameters). SVM is fascinating because the decision boundary
may only rely on a small number of data points, otherwise known as support vectors.

In short, one guiding idea of SVM is a geometric one. In a binary-class learning system, the metric for
the concept of the “best” classification function can be realized geometrically17 by using a line or a plane
(more precisely called a hyperplane when discussing multi-dimensional datasets) to separate the two labeled
groups. The hyperplane that separates the labeled sets is also known as a decision boundary.

This decision boundary can be described as having a hard or soft margin. As one might suspect, there
are instances where the delineation between the labels is pronounced when this occurs decision boundary
produces a hard margin. Alternatively, when the demarcation between the labeled groups is not so well
defined by a straight and rigid line, the decision boundary provided is a soft margin. In either case, researchers
have built up mathematics to deal with hard and soft margins. As an aside, the use of penalization is one
method for coping with data points that impinge on the boundary hyperplane.

By introducing a “soft margin” instead of a hard boundary, we can add a slack variable xi to account for
the amount of a violation by the classifier, which later can be minimized.

In short, one guiding idea of SVM is a geometric one. In a binary-class learning system, the metric for
the concept of the “best” classification function can be realized geometrically18 by using a line or a plane
(more precisely called a hyperplane when discussing multi-dimensional datasets) to separate the two labeled
groups. The hyperplane that separates the labeled sets is also known as a decision boundary.

[Big O notation]Big O notation 19

Algorithm Training Prediction
SVM (Kernel) O(n2p+ n3) O(nsvp)

Where p is the number of features, n_s v_p is the number of support vectors
There are three properties that make SVMs attractive for data scientists:20

1. SVMs construct a maximum margin separator—a decision boundary with the largest pos-
sible distance to example points. This helps them generalize well.

16Kevin P. Murphy, Machine Learning, A Probabilistic Perspective, MIT Press, ISBN 978-0-262-01802-9, 2012
17Xindong Wu, et al., Top 10 algorithms in data mining, Knowl Inf Syst, 14:1–37, DOI:10.1007/s10115-007-0114-2, 2008
18Xindong Wu, et al., Top 10 algorithms in data mining, Knowl Inf Syst, 14:1–37, DOI:10.1007/s10115-007-0114-2, 2008
19Alexandros Karatzoglou, David Meyer, Kurt Hornik, ‘Support Vector Machines in R’, Journal of Statistical Software, April

2006, Volume 15, Issue 9.
20Stuart Russell and Peter Norvig, Artificial Intelligence, A Modern Approach, Third Edition, Pearson, ISBN-13: 978-0-13-

604259-4, 2010

9

DOI:10.1007/s10115-007-0114-2
DOI:10.1007/s10115-007-0114-2

2. SVMs create a linear separating hyperplane, but they have the ability to embed the data
into a higher-dimensional space, using the so-called kernel trick. Often, data that are not
linearly separable in the original input space are easily separable in the higher- dimensional
space. The high-dimensional linear separator is actually nonlinear in the original space.
This means the hypothesis space is greatly expanded over methods that use strictly linear
representations.

3. SVMs are a nonparametric method—they retain training examples and potentially need
to store them all. On the other hand, in practice they often end up retaining only a
small fraction of the number of examples—sometimes as few as a small constant times
the number of dimensions. Thus SVMs combine the advantages of nonparametric and
parametric models: they have the flexibility to represent complex functions, but they are
resistant to overfitting.

SVM-Linear Model

Load Libraries
Libraries <- c("doMC", "knitr", "readr", "tidyverse", "caret", "kernlab")
for (p in Libraries) { # Install Library if not present

if (!require(p, character.only = TRUE)) { install.packages(p) }
library(p, character.only = TRUE)

}

Import data & data handling
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",

col_types = cols(Class = col_factor(levels = c("0", "1")),
PID = col_skip(),
TotalAA = col_skip()))

Partition data into training and testing sets

set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

SVM-Linear Training

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

tuneGrid = svmLinearGrid
svmLinearGrid <- expand.grid(C = c(2^(4.5), 2^5, 2^(5.5)))

Create model, 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",

10

number = 10,
repeats = 5,
savePredictions = "final") # Saves predictions

lin_model_obj <- train(Class ~ .,
data = training_set,
method = "svmLinear",
trControl = tcontrol,
tuneGrid = svmLinearGrid)

end_time <- Sys.time() # End timer
end_time - start_time # Display time

Time difference of 1.845401 mins

registerDoSEQ() # Stop multi-processor mode

SVM-Linear Model Summary

lin_model_obj

Support Vector Machines with Linear Kernel
##
1873 samples
20 predictor
2 classes: '0', '1'
##
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
Resampling results across tuning parameters:
##
C Accuracy Kappa
22.62742 0.9482199 0.8961196
32.00000 0.9484338 0.8965504
45.25483 0.9485402 0.8967687
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was C = 45.25483.

SVM-Linear Predict test_set

Predicted_test_vals <- predict(lin_model_obj, test_set[, -1])

summary(Predicted_test_vals)

0 1
250 217

11

SVM-Linear Confusion Matrix

confusionMatrix(Predicted_test_vals, Class_test, positive = "1")

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 234 16
1 9 208
##
Accuracy : 0.9465
95% CI : (0.922, 0.9651)
No Information Rate : 0.5203
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.8926
##
Mcnemar's Test P-Value : 0.2301
##
Sensitivity : 0.9286
Specificity : 0.9630
Pos Pred Value : 0.9585
Neg Pred Value : 0.9360
Prevalence : 0.4797
Detection Rate : 0.4454
Detection Prevalence : 0.4647
Balanced Accuracy : 0.9458
##
'Positive' Class : 1
##

SVM-Linear Obtain False Positives & False Negatives

fp_fn_svm_linear <- lin_model_obj %>% pluck("pred") %>% dplyr::filter(obs != pred)

Write out to Outliers folder
write.table(fp_fn_svm_linear,

file = "./00-data/03-ml_results/fp_fn_svm_linear.csv",
row.names = FALSE,
na = "",
col.names = TRUE,
sep = ",")

nrow(fp_fn_svm_linear)

[1] 482

12

head(fp_fn_svm_linear)

C pred obs rowIndex Resample
1 45.25483 0 1 1223 Fold01.Rep1
2 45.25483 0 1 1873 Fold03.Rep1
3 45.25483 0 1 1101 Fold05.Rep1
4 45.25483 0 1 1618 Fold04.Rep1
5 45.25483 0 1 1866 Fold01.Rep1
6 45.25483 0 1 1831 Fold05.Rep1

SVM-Polynomial Model

Partition data into training and testing sets

set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

SVM-Poly Training

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

Create model, 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",

number = 10,
repeats = 5,
savePredictions = "final") # Saves predictions

poly_model_obj <- train(Class ~ .,
data = training_set,
method = "svmPoly",
trControl= tcontrol)

end_time <- Sys.time() # End timer
end_time - start_time # Display time

Time difference of 3.100607 mins

registerDoSEQ() # Stop multi-processor mode

13

SVM-Poly Model Summary

poly_model_obj

Support Vector Machines with Polynomial Kernel
##
1873 samples
20 predictor
2 classes: '0', '1'
##
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
Resampling results across tuning parameters:
##
degree scale C Accuracy Kappa
1 0.001 0.25 0.8927921 0.7837449
1 0.001 0.50 0.8931101 0.7842397
1 0.001 1.00 0.8995164 0.7972922
1 0.010 0.25 0.9069985 0.8125193
1 0.010 0.50 0.9182148 0.8352852
1 0.010 1.00 0.9243031 0.8476521
1 0.100 0.25 0.9266532 0.8524643
1 0.100 0.50 0.9326311 0.8645594
1 0.100 1.00 0.9340187 0.8674061
2 0.001 0.25 0.8935368 0.7851036
2 0.001 0.50 0.8997298 0.7977161
2 0.001 1.00 0.9046473 0.8077461
2 0.010 0.25 0.9208824 0.8406987
2 0.010 0.50 0.9316686 0.8625657
2 0.010 1.00 0.9356167 0.8705585
2 0.100 0.25 0.9672198 0.9342616
2 0.100 0.50 0.9670042 0.9338334
2 0.100 1.00 0.9649755 0.9297728
3 0.001 0.25 0.8969559 0.7920424
3 0.001 0.50 0.9014433 0.8012428
3 0.001 1.00 0.9110610 0.8207620
3 0.010 0.25 0.9339083 0.8670639
3 0.010 0.50 0.9365781 0.8724848
3 0.010 1.00 0.9464057 0.8923335
3 0.100 0.25 0.9688252 0.9375066
3 0.100 0.50 0.9704278 0.9407533
3 0.100 1.00 0.9690403 0.9379858
##
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were degree = 3, scale = 0.1 and C = 0.5.

SVM-Poly Predict test_set

Predicted_test_vals <- predict(poly_model_obj, test_set[, -1])

14

summary(Predicted_test_vals)

0 1
246 221

SVM-Poly Confusion Matrix

confusionMatrix(Predicted_test_vals, Class_test, positive = "1")

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 238 8
1 5 216
##
Accuracy : 0.9722
95% CI : (0.9529, 0.9851)
No Information Rate : 0.5203
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.9442
##
Mcnemar's Test P-Value : 0.5791
##
Sensitivity : 0.9643
Specificity : 0.9794
Pos Pred Value : 0.9774
Neg Pred Value : 0.9675
Prevalence : 0.4797
Detection Rate : 0.4625
Detection Prevalence : 0.4732
Balanced Accuracy : 0.9719
##
'Positive' Class : 1
##

SVM-Poly Obtain False Positives & False Negatives

fp_fn_svm_poly <- poly_model_obj %>% pluck("pred") %>% dplyr::filter(obs != pred)

Write CSV in R
write.table(fp_fn_svm_poly,

file = "./00-data/03-ml_results/fp_fn_svm_poly.csv",
row.names = FALSE,
na = "",
col.names = TRUE,
sep=",")

nrow(fp_fn_svm_poly)

15

[1] 277

head(fp_fn_svm_poly)

degree scale C pred obs rowIndex Resample
1 3 0.1 0.5 0 1 1576 Fold01.Rep2
2 3 0.1 0.5 1 0 182 Fold09.Rep4
3 3 0.1 0.5 1 0 445 Fold06.Rep5
4 3 0.1 0.5 1 0 531 Fold09.Rep4
5 3 0.1 0.5 1 0 115 Fold05.Rep2
6 3 0.1 0.5 0 1 1780 Fold02.Rep2

SVM-RBF Model

Load Libraries
rm(list = ls())
Libraries = c("doMC", "knitr", "readr", "tidyverse", "caret", "kernlab")

for(p in Libraries){ # Install Library if not present
if(!require(p, character.only = TRUE)) { install.packages(p) }
library(p, character.only = TRUE)

}
opts_chunk$set(cache = TRUE)

Import data & data handling

c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",
col_types = cols(Class = col_factor(levels = c("0","1")),

PID = col_skip(), TotalAA = col_skip()))
#View(c_m_TRANSFORMED)

Partition data into training and testing sets

set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)

training_set <- c_m_TRANSFORMED[index,]
test_set <- c_m_TRANSFORMED[-index,]

Class_test <- as.factor(test_set$Class)

SVM-RBF Training

set.seed(1000)
registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer

Create tuneGrid: Cost

16

tune.Grid = data.frame(expand.grid(C = 2^(seq(-5, 15, 2))))

Create: 10X fold CV repeated 5X
tcontrol <- trainControl(method = "repeatedcv",

number = 10,
repeats = 5,
savePredictions = "final") # Save predictions

rbf_model_obj <- train(Class ~ .,
data = training_set,
method = "svmRadialCost",
tuneGrid = tune.Grid,
trControl= tcontrol)

end_time <- Sys.time() # End timer
end_time - start_time # Display time

Time difference of 1.12283 mins

registerDoSEQ() # Stop multi-processor mode

SVM-RBF Model Summary

rbf_model_obj

Support Vector Machines with Radial Basis Function Kernel
##
1873 samples
20 predictor
2 classes: '0', '1'
##
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1685, 1686, 1686, 1686, 1686, 1685, ...
Resampling results across tuning parameters:
##
C Accuracy Kappa
3.1250e-02 0.9144721 0.8278653
1.2500e-01 0.9511031 0.9018251
5.0000e-01 0.9704221 0.9406791
2.0000e+00 0.9699937 0.9398269
8.0000e+00 0.9740562 0.9480186
3.2000e+01 0.9720247 0.9439679
1.2800e+02 0.9711714 0.9422795
5.1200e+02 0.9715980 0.9431324
2.0480e+03 0.9714916 0.9429197
8.1920e+03 0.9715980 0.9431330
3.2768e+04 0.9714916 0.9429209
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was C = 8.

17

SVM-RBF Predict test_set

Predicted_test_vals <- predict(rbf_model_obj, test_set[, -1])

summary(Predicted_test_vals)

0 1
245 222

SVM-RBF Confusion Matrix

confusionMatrix(Predicted_test_vals, Class_test, positive = "1")

Confusion Matrix and Statistics
##
Reference
Prediction 0 1
0 238 7
1 5 217
##
Accuracy : 0.9743
95% CI : (0.9555, 0.9867)
No Information Rate : 0.5203
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.9485
##
Mcnemar's Test P-Value : 0.7728
##
Sensitivity : 0.9688
Specificity : 0.9794
Pos Pred Value : 0.9775
Neg Pred Value : 0.9714
Prevalence : 0.4797
Detection Rate : 0.4647
Detection Prevalence : 0.4754
Balanced Accuracy : 0.9741
##
'Positive' Class : 1
##

SVM-RBF Obtain False Positives & False Negatives

fp_fn_svmRadialCost <- rbf_model_obj %>% pluck("pred") %>% dplyr::filter(obs != pred)

Write CSV in R
write.table(fp_fn_svmRadialCost,

file = "./00-data/03-ml_results/fp_fn_svmRbf.csv",

18

row.names = FALSE,
na = "",
col.names = TRUE,
sep=",")

nrow(fp_fn_svmRadialCost)

[1] 243

head(fp_fn_svmRadialCost)

C pred obs rowIndex Resample
1 8 1 0 522 Fold01.Rep1
2 8 0 1 1579 Fold07.Rep1
3 8 0 1 1585 Fold02.Rep1
4 8 0 1 1587 Fold07.Rep1
5 8 1 0 141 Fold07.Rep3
6 8 1 0 94 Fold03.Rep1

SVM Conclusion

SVM has shown that it is very versatile. Using the same amino acid dataset and by changing the type of
function used to build the decision boundary one can get results in the high 90%. Even the linear SVM with
no kernel transformation is able to find a hyperplane that with no more tuning than choosing a large enough
range for the cost function.

It was seen that using a range for the cost starting at 25 and progressing toward 2−15, stepping by one log,
a wide range can be tested. Once the cost function range is narrowed a finer tuning can be carried out using
one-quarter or one-half log steps. This further narrowing of the cost function may not need to be done since
the one log steps seems anecdotally sufficient. This is an easy and powerful tool.

19

	Support Vector Machines for Binary Classification
	Introduction
	Linearly Separable
	Understanding the hyperplane equation
	Soft Margins
	Kernel Use
	SVM-Linear Intuition

	SVM-Linear Model
	SVM-Linear Training
	SVM-Linear Model Summary
	SVM-Linear Predict test_set
	SVM-Linear Confusion Matrix
	SVM-Linear Obtain False Positives & False Negatives

	SVM-Polynomial Model
	SVM-Poly Training
	SVM-Poly Model Summary
	SVM-Poly Predict test_set
	SVM-Poly Confusion Matrix
	SVM-Poly Obtain False Positives & False Negatives

	SVM-RBF Model
	SVM-RBF Training
	SVM-RBF Model Summary
	SVM-RBF Predict test_set
	SVM-RBF Confusion Matrix
	SVM-RBF Obtain False Positives & False Negatives

	SVM Conclusion

