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Introduction

This chapter describes the use and functional understanding of Principle Component Analysis (PCA). PCA
is very popular and commonly used during the early phases of model development to provide information on
variance. In particular, PCA is a transformative process that orders and maximizes variances found within
a dataset.

The primary goal of principal components analysis is to reveal the hidden structure in a dataset.
In so doing, we may be able to; 1

1. identify how different variables work together to create the dynamics of the system,
2. reduce the dimensionality of the data,
3. decrease redundancy in the data,
4. filter some of the noise in the data,
5. compress the data,
6. prepare the data for further analysis using other techniques.

Advantages Of Using PCA Include

1. PCA preserves the global structure among the data points,

2. It is efficiently applied to large data sets,

3. PCA may provide information on the importance of features found in the original datasets.

Disadvantages Of PCA Should Be Considered

1. PCA can easily suffer from scale complications,

2. Similarly to the point above, PCA is susceptible to significant outliers. If the number of samples is small
or when values have many potential outliers, this can influence scaling and relative point placement,

3. Intuitive understanding can be tricky.
1Emily Mankin, Principal Components Analysis: A How-To Manual for R, http://people.tamu.edu/~alawing/materials/

ESSM689/pca.pdf
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Data centering / scaling / normalization

It is common for the first step when carrying out a PCA is to center, scale, normalize the data. This is
important due the fact that PCA is sensitive to the scale of the features. If the features are quite different
frome each other, i.e. different by one or more orders of magnitude then scaling is crucial.

While determining the variance of your dataset, it should be clear that the order of magnitude of your data
features matters significantly. The reasons for this should be clear that if one axis is in 1,000’s while the
second axis is between 1 and 10, the larger scale will have a higher variance distorting the results.
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What do the center and scale arguments do in the prcomp command?

There are four common methods for scaling data:

Method Formula
Centering f(x) = x− x̄

Scaling [0, 1] f(x) = x−min(x)
max(x)−min(x)

Scaling [a, b] f(x) = (b− a) ∗ x−min(x)
max(x)−min(x) + a

Normalizing f(x) = x−mean(x)
σx

Histograms of Scaled Vs. Unscaled data

Investigating the differences between the amino acid Phenylalanine (F) before and after 2 scaling methods.

Unscaled Data
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Centered Data
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Normalized Data
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Investigating the plots above, the main idea to recognize is that the data has not been fundamentally changed,
simply ‘shifted and stretched’ or more accurately transformed. It appears that any visible changes of the
distributions can be accounted for by differing binnings.

Although the differences are between all three histograms are minor, any transformation would be sufficient
to use. However, I chose to use the Normalized dataset.
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Finding the Covariance Matrix

The first step for calculating PCA is to determine the Covariance matrix. Covariance provides a measure of
how strongly variables change together.2 3

Covariance of two variables

Remember, this simplified formula is to determine covariance for a two-dimensional system.

cov(x, y) = 1
N

N∑
i=1

(xi − x̄)(yi − ȳ) (1)

Where N is the number of observations, x̄ is the mean of the independent variable, ȳ is the mean of the
dependent variable.

Covariance of matrices

When dealing with a many feature variables one needs to determine the covariance of matrices, M using
linear algebra. 4

1. Find the column means of the matrix, Mmeans.
2. Find the difference matrix, D = M −Mmeans.
3. Finally calculate the covariance matrix:

cov (M) =
(

1
N − 1

)
DT ·D, where D = M −Mmeans (2)

Where DT is the transpose of the difference matrix, N is the number of observations or rows in this case.

Finding PCA via singular value decomposition

The procedure below is an outline, not the full computation of PCA.
This procedure for PCA relies on the fact that it is similar to the singular value decomposition (SVD) used
when determining eigenvectors and eigenvalues. 5

Singular value decomposition says that every n x p matrix can be written as the product of three
matrices: A = UΣV T where:

1. U is an orthogonal n x n matrix.
2. Σ is a diagonal n x p matrix. In practice, the diagonal elements are ordered so that

Σii = Σjj for all i < j.
3. V is an orthogonal p x p matrix, and V T represents a matrix transpose.

The SVD represents the essential geometry of a linear transformation. It tells us that every linear
transformation is a composition of three fundamental actions. Reading the equation from right
to left:

2http://mathworld.wolfram.com/Covariance.html
3Trevor Hastie, Robert Tibshirani, Jerome Friedman, ‘The Elements of Statistical Learning; Data Mining, Inference, and

Prediction,’ Second Edition, Springer, DOI:10.1007/978-0-387-84858-7, 2009
4http://mathworld.wolfram.com/Covariance.html
5https://blogs.sas.com/content/iml/2017/08/28/singular-value-decomposition-svd-sas.html
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1. The matrix V represents a rotation or reflection of vectors in the p-dimensional domain.
2. The matrix Σ represents a linear dilation or contraction along each of the p coordinate

directions. If n 6= p, this step also canonically embeds (or projects) the p-dimensional
domain into (or onto) the n-dimensional range.

3. The matrix U represents a rotation or reflection of vectors in the n-dimensional range.

The intuition for understanding PCA is reasonably straightforward. Consider the 2-dimensional data cloud
of points or observations in a hypothetical experiment, as seen in the figure on the left. Variances along
both the x and y dimensions are calculated. However, given the data shown, there is a rotation of that
x-y plane, which will present the data showing its most significant variance. This variance will reside on
an axis analogous to points on an Ordinary Least Squares (OLS) line. This axis is called the first principle
component followed by the second principal component and so on.

Unlike an OLS calculation, PCA will determine not only the first and most significant variance of your
data set, but it will, through the rotation and transform your dataset via linear algebra, calculating N
variances within your dataset, where N is equal to the number of features in the dataset. The second
principal component will be calculated only along a coordinate axis, which is perpendicular (orthogonal or
orthonormal) to the first. Each subsequent principal component will then be calculated along axes which
are orthogonal to each other. A further benefit of using PCA is that the variances it reports will be ranked
in order from highest to lowest. 6

Example of two-dimensional PCA using random data
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6Brian Everitt, Torsten Hothorn, An Introduction to Applied Multivariate Analysis with R, Springer, DOI:10.1007/978-1-
4419-9650-3, 2011
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Graphic Range (Green lines) Differences
Raw Data (Left) 1 <= x <= 4 3 units
Transformed Data (Right) -2.45 <= x <= 2.77 5.22 units

If we investigate the figures above we find that the range of the samples is (1 <= x <= 4), while the range for
the transformed data is (-2.45 <= x <= 2.76). The differences between the two ranges are 3 and 5.21 units,
respectively. The rotation should be no surprise since the PCA is essentially a maximization of variance.

Many R-packages will carry out the steps for PCA all behind the ‘scenes’ but giving no greater understanding
for beginners. For example, stats::prcomp 7, stats::princomp 8 are most commonly used. However, there
are dozens of similar packages. A keyword search for PCA at R-cran 9 provides 78 matches, as of November
2019.

Principle component analysis using norm_c_m_20aa

start_time <- Sys.time() # Start timer

c_m_20_PCA <- prcomp(norm_c_m_20aa)

Sys.time() - start_time # End timer & display time difference

## Time difference of 0.02079487 secs

Screeplot & Cumulative Proportion of Variance plot

Two plots are commonly used to determine the number of principal components that a researcher would
generally accept as useful. The eigenvalues derived from PCA are proportional to the variances which they
represent, and depending on the strategy used to calculate them, the eigenvalues are equal to the variances
of the components.

The first of the two plots which I which is the scree plot. 10 The scree plot is a ranked list of the eigenvalues
plotted against its principal components. An eigenvalue score of one is thought to provide a comparable
amount of information as a single variable un-transformed by PCA.

The second plot describes the cumulative proportion of variance versus the principal component. This graphic
shows how much each principal component represents the entire cumulative variances or total squared error.

Cumlative Proportion of V ariance = σ2
i∑N

i=1 σ
2
i

(3)

Here again, there are several criteria regarding how best to use the information from the is plot. The first
of which is Cattell’s heuristic. Cattell advises using the principal component that is above the elbow of
the curve. The second heuristic is keeping the total number of factors that best explains 80%-95% of the
variance. There is no hard-fast rule at this time; a set of researchers only uses the first three factors or

7https://stat.ethz.ch/R-manual/R-devel/library/stats/html/prcomp.html
8https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
9https://cran.r-project.org/web/packages/available_packages_by_name.html

10Raymond Cattell, “The scree test for the number of factors.” Multivariate Behavioral Research. 1 (2): 245–76. DOI:
10.1207/s15327906mbr0102_10, 1966
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none at all.11 A second suggestion is to use the Kaiser rule, which states it is sufficient to use Principal
Components, which have an eigenvalue greater than or equal to one. 12

Screeplot of c_m_20_PCA
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11Nicole Radzill, Ph.D., personal communication.
12https://stats.stackexchange.com/questions/253535/the-advantages-and-disadvantages-of-using-kaiser-rule-to-select-the-

number-of-pr
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If we investigate the ‘cumulative proportion of variance’ plot, we see an arbitrary line on the Y-axis, which
denotes the 90% mark. At this point, the plot suggests that a researcher could use the most significant 12
of the variances from the PCA.

Biplots

Biplot 1: PC1 Vs. PC2 with ‘Class’ by color labels

• Black indicates control protein set, Class = 0

• Blue indicates myoglobin protein set, Class = 1

The first two principal components describe 46.95% of the variance.

Biplot 2: Determination Of 4 Rule Set For Outliers
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Obtain Anomalous Points From Biplot #2: PC1 Vs. PC2

Anomalous data points are data that is greater than the absolute value of 3 sigma, Anomalous Point > |3σ|.

I have chosen to analyze the PCA biplot of the first and second principal components. The first and second
components were used because they describe nearly 50% of the variance (46.95%).

Outliers from Principal Component-1

Rule Set Given PC1:

1. Outlier_1: c_m_20_PCA$x[, 1] > 3 standard deviations

2. Outlier_2: c_m_20_PCA$x[, 1] < -3 standard deviations
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outliers_PC1 <- which((c_m_20_PCA$x[, 1] > 3) | (c_m_20_PCA$x[, 1] < -3))
length(outliers_PC1)

## [1] 285

Outliers from Principal Component-2

Rule Set Given PC2:

3. Outlier_3: c_m_20_PCA$x[, 2] > 3 standard deviations

4. Outlier_4: c_m_20_PCA$x[, 2] < -3 standard deviations

outliers_PC2 <- which((c_m_20_PCA$x[, 2] > 3) | (c_m_20_PCA$x[, 2] < -3))
length(outliers_PC2)

## [1] 177

List of all outliers (union and sorted) found using the ruleset 1 through 4

• The list of total outliers is derived by taking the union of outliers_PC1 and outliers_PC2 and then
using sort.

total_pca_1_2_outliers <- union(outliers_PC1, outliers_PC2)
total_pca_1_2_outliers <- sort(total_pca_1_2_outliers)

length(total_pca_1_2_outliers)

## [1] 461

# Write out to Outliers folder
write.table(total_pca_1_2_outliers,
file = "./00-data/03-ml_results/pca_outliers.csv",
row.names = FALSE,
na = "",
col.names = "rowNum",
sep = ",")

It is important to remember and understand that this list of “total_pca_1_2_outliers” includes BOTH
negative and positive controls. The groupings are as follows:

Group Range of Groups
Controls 1, . . . , 1216
Positive (Myoglobin) 1217, . . . , 2341
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PCA Conclusion

Principal Component Analysis is very popular and an excellent choice to include during Exploratory Data.
Analysis. One objective for using PCA is to filter noise from the dataset used and, in turn, increase any
signal or to sufficiently delineate observations from each other. In fact, in the figure below, there are five
colored groups outside the main body of observations that are marked at ‘outliers.’ The number of outliers
obtained from PCA is 461 proteins. The premise of this experiment is to determine if PCA is an excellent
representative measure for proteins that are categorized is false-positive, and false-negatives in the five
subsequent machine learning model approach. It will be interesting to see if anyone of these groups will be
present in the group of false-positives and false-negatives in any of the machine learning models.

Outliers derived from PC1 Vs PC2

The table and the figure below show a subset of outliers produced when the first and second principal
component is graphed. My interest lies in finding if any one of the lettered groups (A-E) are part of the
false-positives and false-negatives from each of the machine learning models. Each of the five groups is rich is
a small number of amino acids. We hope that this information will shine a light on how the different machine
models work. It is also expected that this will give help in constructing a model that is more interpretable for
the more difficult opaque machine learning models, such as Random Forest, Neural Networks, and possibly
Support Vector Machine using the Radial Basis Function.

Group Increased concentration of amino acid Example observations
A H, L, K 1478
B E, K 1934, 1870, 2100
C V, I, F, Y 182, 1752, 2156
D C, S 1360, 2240
E G, D, Q 664, 2304
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