Exploratory Data Analysis

"Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods." ${ }^{1}$

Introduction

The experiment described herein involves taking groups of proteins from the Uniprot.org database and comparing how well different machine learning techniques do at separating the positive from the negative control grouping. In this circumstance, proteins from the myoglobin family are analyzed against randomly chosen human proteins, which are not related to hemoglobin or myoglobin.

This work is to characterize the anomalous points derived from PCA and compare them to the false-positives and false-negatives generated from each of six machine learning approaches produces. For the sake of this paper anomalous points are defined as values greater than the absolute value of three times the standard deviation from of the first and second principal components.

$$
\begin{equation*}
\text { Anomalous Points }>|3 \sigma| \quad \text { where } \quad \sigma=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{1}
\end{equation*}
$$

Therefore the M.L techniques will be:

1. Principal Component Analysis,
2. Logistic Regression,
3. SVM-Linear,
4. SVM-polynomial,
5. SVM-RBF,
6. Neural Network.

Four-Step Analysis

At this stage, data is inspected in a careful and structured way. Hence, I have chosen a four-step process:

1. Hypothesize,
2. Summarize,
3. Visualize,
4. Normalize.

Useful Guides for Exploratory Data Analysis

The summarization of the amino acid dataset is based on a hybrid set of guidelines;

1. NIST Handbook of Statistics, ${ }^{2}$
2. Exploratory Data Analysis With R by Roger Peng, ${ }^{3}$
3. Exploratory Data Analysis Using R by Ronald K. Pearson. ${ }^{4}$
[^0]
Questions During EDA

Although exploratory data analysis does not always have a formal hypothesis testing portion, I do, however, pose several questions concerning the structure, quality, and types of data.

1. Do the independent variables of this study have large skewed distributions?
1.1 If skews are greater than 2.0, then can a transformation be used for normalization?
1.2 Determine what transformation to use?
2. Can Feature Selection be used, and which procedures are appropriate?
2.1 Use the Random Forest technique known as Boruta ${ }^{5}$ for feature importance or reduction?
2.2 Will coefficients of correlation (R) find collinearity and reduce the number of features?
2.3 Will principal component analysis (PCA) be useful in finding hidden structures of patterns?
2.4 Can PCA be used successfully for Feature Selection?
3. What is the structure of the data?
3.1 Is the data representative of the entire experimental space?
3.2 Is missing data an issue?
3.3 Does the data have certain biases, either known or unknown?
3.4 What relationships do we expect from these variables? ${ }^{6}$

Analysis of RAW data

Raw data is considered: ./00-data/02-aac_dpc_values/c_m_RAW_AAC.csv

```
# Import libraries, NO "doMC",
library(easypackages)
libraries("knitr", "readr", "RColorBrewer", "corrplot", "Boruta", "kableExtra")
# Import RAW data
c_m_RAW_AAC <- read_csv("./00-data/02-aac_dpc_values/c_m_RAW_AAC.cSv")
Class <- as.factor(c_m_RAW_AAC$Class)
```


Visually inspect RAW data files

1. Use the command-line interface followed by the command less.
2. Check for binary instead of ASCII and bad Unicode.

Inspect RAW dataframe structure, str()

```
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 2340 obs. of 23 variables:
## $ Class : num 0 0 0 0 0 0 0 0 0 0 ...
## $ TotalAA: num 226 221 624 1014 699 ...
## $ PID : chr "C1" "C2" "C3" "C4" ...
## $ A : num 0.2655 0.2081 0.0433 0.0661 0.0644 ...
## $ C : num 0 0 0.00962 0.01381 0.03577 ...
```

[^1]```
$ D : num 0.00442 0.00452 0.04647 0.06114 0.02861 ...
$ E : num 0.031 0.0271 0.0833 0.074 0.0472 ...
$ F : num 0.00442 0.00452 0.02564 0.02959 0.06295 ...
$ G : num 0.0708 0.0769 0.0817 0.07 0.0443 ...
$ H : num 0 0 0.0176 0.0187 0.0157 ...
$ I : num 0.00885 0.0181 0.03045 0.04734 0.0701 ...
$ K : num 0.28761 0.27602 0.00962 0.12426 0.05579 ...
$ L : num 0.0442 0.0452 0.0577 0.0888 0.1359 ...
$ M : num 0.00442 0.00452 0.01442 0.02465 0.02289 ...
$ N : num 0.0177 0.0136 0.0641 0.0355 0.0558 ...
$ P : num 0.0841 0.0995 0.0449 0.0434 0.0472 ...
$ Q : num 0.00442 0.00905 0.04327 0.03353 0.02861 ...
$ R : num 0.0133 0.0181 0.1202 0.0325 0.0415 ...
$ S : num 0.0575 0.0724 0.1875 0.0838 0.0787 ...
$ T : num 0.0531 0.0633 0.0625 0.0414 0.0744 ...
$ V : num 0.0442 0.0543 0.0385 0.0671 0.0458 ...
$ W : num 0 0 0.00481 0.01282 0.00715 ...
$ Y : num 0.00442 0.00452 0.01442 0.03156 0.0372 ...
- attr(*, "spec")=
.. cols(
.. Class = col_double(),
.. TotalAA = col_double(),
.. PID = col_character(),
.. A = col_double(),
.. C = col_double(),
.. D = col_double(),
.. E = col_double(),
.. F = col_double(),
.. G = col_double(),
.. H = col_double(),
.. I = col_double(),
.. K = col_double(),
.. L = col_double(),
.. M = col_double(),
.. N = col_double(),
.. P = col_double(),
.. Q = col_double(),
.. R = col_double(),
.. S = col_double(),
.. T = col_double(),
.. V = col_double(),
.. W = col_double(),
.. Y = col_double()
..)
```


## Check RAW data head \& tail

```
head(c_m_RAW_AAC, n = 2)
```

\#\# \# A tibble: 2 x 23
\#\# Class TotalAA PID $\quad$ A $\quad$ C $\quad$ D $\quad$ E $\quad$ F $\quad$ G $\quad$ H $\quad$ I
\#\# <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

```
1 0 226 C1 0.265 0 0.00442 0.0310 0.00442 0.0708 0 0.00885
2 0 221 C2 0.208 0 0.00452 0.0271 0.00452 0.0769 0 0.0181
... with 12 more variables: K <dbl>, L <dbl>, M <dbl>, N <dbl>, P <dbl>,
Q <dbl>, R <dbl>, S <dbl>, T <dbl>, V <dbl>, W <dbl>, Y <dbl>
tail(c_m_RAW_AAC, n = 2)
\begin{tabular}{lrrrrrrrrrr}
\#\# \# & A tibble: 2 x & 23 & & & & & & & \\
\#\# & Class & TotalAA & PID & A & C & D & E & F & G & H
\end{tabular}
```


## Check RAW data types

```
is.data.frame(c_m_RAW_AAC)
[1] TRUE
class(c_m_RAW_AAC$Class) # Col 1
[1] "numeric"
class(c_m_RAW_AAC$TotalAA) # Col 2
[1] "numeric"
class(c_m_RAW_AAC$PID) # Col 3
[1] "character"
class(c_m_RAW_AAC$A) # Col 4
[1] "numeric"
```


## Check RAW dataframe dimensions

```
dim(c_m_RAW_AAC)
[1] 2340 23
```


## Check RAW for missing values

- No missing values found.

```
apply(is.na(c_m_RAW_AAC), 2, which)
```

```
integer(0)
sapply(c_m_RAW_AAC, function(x) sum(is.na(x))) # Sum up NA by columns
c_m_RAW_AAC[rowSums(is.na(c_m_RAW_AAC)) != 0,] # Show rows where NA's is not zero
```


## Number of polypeptides per Class:

- Class $0=$ Control,
- Class $1=$ Myoglobin

```
##
0 1
1216 1124
```

Numerical summary of RAW data

| \#\# | Class | TotalAA | PID | A |
| :---: | :---: | :---: | :---: | :---: |
| \#\# | Min. $: 0.0000$ | Min. : 2.0 | Length:2340 | Min. 0.00000 |
| \#\# | 1st Qu.:0.0000 | 1st Qu.: 109.8 | Class : character | 1st Qu.:0.05108 |
| \#\# | Median :0.0000 | Median : 154.0 | Mode :characte | Median :0.07364 |
| \# | Mean :0.4803 | Mean : 353.8 |  | Mean :0.07835 |
| \#\# | 3rd Qu.:1.0000 | 3rd Qu.: 407.0 |  | 3rd Qu.:0.10261 |
| \#\# | Max. $: 1.0000$ | Max. : 4660.0 |  | Max. 00.28000 |
| \#\# | C | D | E | F |
| \#\# | Min. 00.000000 | Min. 00.00000 | Min. 00.00000 | Min. :0.00000 |
| \#\# | 1st Qu.:0.000000 | 1st Qu.:0.03401 | 1st Qu.:0.05435 | 1st Qu.:0.03801 |
| \#\# | Median :0.007034 | Median :0.05195 | Median :0.07143 | Median :0.04545 |
| \#\# | Mean :0.011970 | Mean :0.04900 | Mean :0.07451 | Mean :0.05135 |
| \#\# | 3rd Qu.:0.020408 | 3rd Qu.:0.06567 | 3rd Qu.:0.09091 | 3rd Qu.:0.05501 |
| \#\# | Max. 00.159420 | Max. $: 0.17647$ | Max. 0.50000 | Max. $: 0.37500$ |
| \#\# | G | H | I | K |
| \#\# | Min. 0.00000 | Min. 00.00000 | Min. 00.00000 | Min. :0.00000 |
| \#\# | 1st Qu.:0.04544 | 1st Qu.:0.01324 | 1st Qu.:0.04348 | 1st Qu.:0.05797 |
| \#\# | Median :0.06394 | Median :0.02297 | Median :0.05992 | Median :0.08182 |
| \#\# | Mean :0.06193 | Mean :0.02890 | Mean :0.06839 | Mean :0.08386 |
| \#\# | 3rd Qu.:0.08625 | 3rd Qu.:0.04095 | 3rd Qu.:0.08216 | 3rd Qu.:0.12081 |
| \#\# | Max. 0.36364 | Max. 00.13333 | Max. 00.50000 | Max. $: 0.28761$ |
| \#\# | L | M | N | P |
| \#\# | Min. 0.00000 | Min. 00.00000 | Min. 00.00000 | Min. 00.00000 |
| \#\# | 1st Qu.:0.07480 | 1st Qu.:0.01087 | 1st Qu.:0.01948 | 1st Qu.:0.02464 |
| \#\# | Median :0.09136 | Median :0.01948 | Median :0.04145 | Median :0.03401 |
| \#\# | Mean :0.09313 | Mean :0.01949 | Mean :0.04228 | Mean :0.03825 |
| \#\# | 3rd Qu.:0.11688 | 3rd Qu.:0.02721 | 3rd Qu.:0.05788 | 3rd Qu.:0.04772 |
| \#\# | Max. 0.25000 | Max. :0.11111 | Max. $: 0.12563$ | Max. $: 0.20635$ |
| \#\# | Q | R | S | $\mathrm{T}$ |
| \#\# | Min. 0.00000 | Min. 00.00000 | Min. 00.00000 | Min. 00.00000 |
| \#\# | 1st Qu.:0.02212 | 1st Qu.:0.01476 | 1st Qu.:0.04348 | 1st Qu.:0.03247 |
| \#\# | Median :0.03598 | Median :0.03896 | Median :0.05564 | Median :0.05194 |
| \#\# | Mean :0.03342 | Mean :0.03818 | Mean :0.06191 | Mean :0.04838 |

```
3rd Qu.:0.04545 3rd Qu.:0.05370 3rd Qu.:0.06964 3rd Qu.:0.06522
Max. :0.18182 Max. :0.24324 Max. :0.22619 Max. :0.18750
V W Y
Min. :0.00000 Min. :0.000000 Min. :0.00000
1st Qu.:0.04575 1st Qu.:0.001899 1st Qu.:0.01463
Median :0.05844 Median :0.011492 Median :0.02865
Mean :0.06512 Mean :0.012327 Mean :0.03644
3rd Qu.:0.07405 3rd Qu.:0.017889 3rd Qu.:0.04564
Max. :0.20000 Max. :0.133333 Max. :0.14286
```

Visualize Descriptive Statistics using RAW Data

Formulas for mean:

$$
\begin{equation*}
E[X]=\sum_{i=1}^{n} x_{i} p_{i} ; \quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{2}
\end{equation*}
$$

## Scatter plot of means of Myoglobin-Control amino acid composition of RAW Data

- This Scatter-plot shows the means for each feature (column-means) in the dataset. The means represent the ungrouped or total of all proteins (where $n=2340$ ) versus AA type.


## RAW Data: Column-Means of \% Composition Vs Amino Acid



```
A-4
Grouped barchart of amino acid vs. protein category
barplot(percent_aa,
 main = "Mean % A.A.Composition Of 3 Protein Groupings",
 ylab = "% AA Composition",
 ylim = c(0, 12),
 col = colorRampPalette(brewer.pal(4, "Blues"))(3),
 legend = T,
 beside = T)
```

Means of percent amino acid composition of control \& myoglobin categories, RAW data

Mean \% A.A.Composition Of Control \& Myoglobin


Boxplots of grand-means of overall amino acid composition, RAW data

## Boxplots: All; \% Composition Vs Amino Acid



Boxplots of amino acid compositions for control (only), RAW data

Boxplots: Controls; \% AAC Vs Amino Acid


Boxplots of amino acid compositions for myoglobin (only), RAW data

Boxplot: Myoglobin; \% AAC Vs Amino Acid


## Boxplots: Controls



Amino Acid

Boxplot: Myoglobin


Amino Acid

## RAW Data: Length of Polypeptides Vs Control, Myoglobin \& Combinı



Plot Coefficient Of Variance For RAW Data

Standard deviations are sensitive to scale. Therefore I compare the normalized standard deviations. This normalized standard deviation is more commonly called the coefficient of variation (CV).

$$
\begin{gather*}
C V=\frac{\sigma(x)}{E[|x|]} \quad \text { where } \sigma(x) \equiv \sqrt{E[x-\mu]^{2}}  \tag{3}\\
C V=\frac{1}{\bar{x}} \cdot \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{4}
\end{gather*}
$$

## Plot of Coefficient Of Variance (CV), RAW Data



AA_var_norm

| \#\# | A | C | D | E | F | G | H | I |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# | 0.6095112 | 1.2444944 | 0.5478540 | 0.4156102 | 0.5436243 | 0.5201625 | 0.7966296 | 0.6005962 |
| \#\# | K | L | M | N | P | Q | R | S |
| \#\# | 0.4689544 | 0.3215591 | 0.6529752 | 0.7352478 | 0.7383244 | 0.5752622 | 0.7680977 | 0.4948690 |
| \#\# | T | V | W | Y |  |  |  |  |
| \#\# | 0.5830352 | 0.4420595 | 0.9461276 | 0.8461615 |  |  |  |  |

Skewness of distributions, RAW data

$$
\begin{gather*}
\text { Skewness }=E\left[\left(\frac{X-\mu}{\sigma(x)}\right)^{3}\right] \text { where } \sigma(x) \equiv \sqrt{E[x-\mu]^{2}}  \tag{5}\\
\text { Skewness }=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{\left(\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{3}} \tag{6}
\end{gather*}
$$

Skewness values for each A.A. are determined in totality.

## Plot of Skewness Vs Amino Acids, RAW Data



```
AA_skewness
```

| \#\# | A | C | D | E | F | G |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# | 0.670502595 | 2.538162400 | -0.058540442 | 1.782876260 | 2.128117638 | 0.091338300 |
| \#\# | H | I | K | L | M | N |
| \#\# | 1.135783661 | 2.192145038 | 0.223433207 | -0.172566877 | 0.744002991 | 0.633532783 |
| \#\# | P | Q | Q | S | T | V |
| \#\# | 1.493903282 | 0.306716333 | 1.241930812 | 1.448521897 | -0.006075043 | 1.338971930 |
| \#\# | W | Y |  |  |  |  |
| \#\# | 1.831047440 | 1.694362388 |  |  |  |  |

## Determine coefficients of correlation, RAW data

An easily interpretable test is a correlation 2D-plot for investigating multicollinearity or feature reduction. Fewer attributes "means decreased computational time and complexity. Secondly, if two predictors are highly correlated, this implies that they measure the same underlying information. Removing one should not compromise the performance of the model and might lead to a more parsimonious and interpretable model. Third, some models can be crippled by predictors with degenerate distributions." ${ }^{7}$

Pearson's correlation coefficient:

$$
\begin{gather*}
\rho_{x, y}=\frac{E\left[\left(X-\mu_{x}\right)\left(X-\mu_{y}\right)\right]}{\sigma_{x} \sigma_{y}}  \tag{7}\\
r_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{1}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \tag{8}
\end{gather*}
$$

[^2]```
c_m_corr_mat <- cor(c_m_RAW_AAC[, c(2, 4:23)], method = "p") # "p": Pearson test for continous variable
corrplot(abs(c_m_corr_mat),
    title = "Correlation Plot Of AAC, RAW Data",
    method = "square",
    type = "lower",
    tl.pos = "d",
    cl.lim = c(0, 1),
    addgrid.col = "lightgrey",
    cl.pos = "b", # Color legend position bottom.
    order = "FPC", # "FPC" = first principal component order.
    mar = c(1, 2, 1, 2),
    tl.col = "black")
```


Correlation Plot Of AAC, RAW Data

NOTE: Amino acids shown in First Principal Component order, top to bottom.

1. Maximum value of Correlation between $\mathrm{T} \& \mathrm{~N}$.
\#\# [1] 0.7098085
2. According to Max Kuhn ${ }^{8}$, correlation coefficients need only be addressed if the $|\mathrm{R}|>=0.75$.
3. Therefore is no reason to consider multicollinearity.
[^3]
Boruta Random Forest Test, RAW data

It finds relevant features by comparing original attributes' importance with importance achievable at random, estimated using their permuted copies (shadows).
Miron Kursa ${ }^{9}$

```
c_m_class_20 <- c_m_RAW_AAC[, -c(2, 3)] # Remove TotalAA छ PID
Class <- as.factor(c_m_class_20$Class) # Convert 'Class' To Factor
```

NOTE: $m c A d j=T R U E$, If True, multiple comparisons will be adjusted using the Bonferroni method to calculate p-values. Therefore, $p_{i} \leq \frac{\alpha}{m}$ where α is the desired p-value and m is the total number of null hypotheses.

```
set.seed(1000)
#registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer
boruta_output <- Boruta(Class ~ .,
    data = c_m_class_20[, -1],
    mcAdj = TRUE, # See Note above.
    doTrace = 1) # doTrace = 1, represents non-verbose mode.
#registerDoSEQ() # Stop multi-processor mode
end_time <- Sys.time() # End timer
end_time - start_time # Display elapsed time
## Time difference of 31.45118 secs
names(boruta_output)
```

[^4]Plot variable importance, RAW Data

Variable Importance, RAW Data (Bigger=Better)

Variable importance scores, RAW Data
\#\# Warning in TentativeRoughFix(boruta_output): There are no Tentative attributes!
\#\# Returning original object.

	meanImp	decision
R	43.18824	Confirmed
H	34.29757	Confirmed
P	28.70225	Confirmed
C	27.67710	Confirmed
K	27.60808	Confirmed
E	26.18884	Confirmed
Y	22.85337	Confirmed
T	21.67689	Confirmed
S	21.43716	Confirmed
A	20.53089	Confirmed
N	20.09681	Confirmed
V	18.77054	Confirmed
I	18.76492	Confirmed
F	18.31240	Confirmed
D	17.64592	Confirmed
G	16.15461	Confirmed
W	15.74107	Confirmed
L	15.27767	Confirmed
M	14.82861	Confirmed
Q	14.13939	Confirmed

Conclusion for Boruta random forest test, RAW Data

- All features are essential. None should be dropped.

Conclusions For EDA, RAW data

Three amino acids (C, F, I) from the single amino acid percent composition were deemed problematic due to their skewness were greater than 2.0 . This suggests that a transformation should be carried out to rectify this issue.

Protein	Skewness
C, Cysteine	2.538162
F, Phenolalanine	2.128118
I, Isoleucine	2.192145

Analysis of TRANSFORMED data

This EDA section is a reevaluation square root transformed, c_m_RAW_ACC.csv data set, hence called c_m_TRANSFORMED.csv.
The \sqrt{x}_{i} Transformed data is derived from c_m_RAW_ACC. csv where the amino acids C, F, I were transformed using a square root function. This transformation was done to reduce the skewness of these samples and avoid modeling problems arising from high skewness, as seen below.

Amino Acid	Initial skewness	Skew After Square-Root Transformation
C, Cysteine	2.538162	0.3478132
F, Phenolalanine	2.128118	-0.102739
I, Isoleucine	2.192145	0.2934749

```
# Import Transformed data
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv")
Class <- as.factor(c_m_TRANSFORMED$Class)
```

Check Transformed dataframe dimensions

```
dim(c_m_TRANSFORMED)
```

```
## [1] 2340 23
```


Check Transformed for missing values

```
apply(is.na(c_m_TRANSFORMED), 2, which)
```

\#\# integer (0)

- No missing values found.

Count Transformed data for the number of polypeptides per class

Number of polypeptides per Class:

- Class $0=$ Control,
- Class $1=$ Myoglobin

```
##
## 0 1
## 1216 1124
```


Visualization Descriptive Statistics, TRANSFORMED data

Formulas for mean:

$$
\begin{equation*}
E[X]=\sum_{i=1}^{n} x_{i} p_{i} ; \quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{9}
\end{equation*}
$$

Scatter plot of means of Myoglobin-Control amino acid composition \sqrt{x}, TRANSFORMED data

- This plot shows the means for each feature (column-means) in the dataset. The means represent the ungrouped or total of all proteins (where $\mathrm{n}=2340$) versus AA type.

Column-Means Vs Amino Acid, TRANSFORMED data

(Note: The red line at 0.1 is simply an arbitrary marker)

```
# A-4
## Grouped barchart of $\sqrt x_i$ Transformed amino acid vs.
## protein category data
barplot(percent_aa,
    main = "Mean % A.A.Composition, TRANSFORMED data",
    ylab = "% AA Composition",
    ylim = c(0, 30),
    col = colorRampPalette(brewer.pal(4, "Blues"))(3),
    legend = T,
    beside = T)
```

Grouped bar chart of means for percent amino acid composition of Transformed Data; control \& myoglobin categories

Means of \% A.A.Composition, TRANSFORMED data

Boxplots of grand-means of the overall amino acid composition of square-root transformed data

\% AAC Vs Amino Acid, TRANSFORMED data

Amino Acid

Boxplots of amino acid compositions for control (only) of square-root transformed data

Control, \% AAC Vs Amino Acid, TRANSFORMED data

Boxplots of amino acid compositions for myoglobin of square-root transformed Data(only), TRANSFORMED data

Myoglobin, \% AAC Vs Amino Acid, TRANSFORMED data

Amino Acid

Length of Polypeptides, TRANSFORMED data

Coefficient of Variance (CV), TRANSFORMED data

Standard deviations are sensitive to scale. Therefore I compare the normalized standard deviations. This normalized standard deviation is more commonly called the coefficient of variation (CV).

$$
\begin{gather*}
C V=\frac{\sigma(x)}{E[|x|]} \quad \text { where } \sigma(x) \equiv \sqrt{E[x-\mu]^{2}} \tag{10}\\
C V=\frac{1}{\bar{x}} \cdot \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{11}
\end{gather*}
$$

Plot of Coefficient Of Variance (CV)

Coefficient Of Variance, TRANSFORMED data

Amino Acid

AA_var_norm

\#\#	A	C	D	E	F	G	H	I
\#\#	0.6095112	0.8729758	0.5478540	0.4156102	0.2815745	0.5201625	0.7966296	0.2999687
\#\#	K	L	M	N	P	Q	R	S
\#\#	0.4689544	0.3215591	0.6529752	0.7352478	0.7383244	0.5752622	0.7680977	0.4948690
\#\#	T	V	W	Y				
\#\#	0.5830352	0.4420595	0.9461276	0.8461615				

Skewness of distributions, TRANSFORMED data

$$
\begin{gather*}
\text { Skewness }=E\left[\left(\frac{X-\mu}{\sigma(x)}\right)^{3}\right] \text { where } \sigma(x) \equiv \sqrt{E[x-\mu]^{2}} \tag{12}\\
\text { Skewness }=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{\left(\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{3}} \tag{13}
\end{gather*}
$$

- Skewness values for each A.A. by Class of square-root transformed data

Skewness of Amino Acids, TRANSFORMED data

AA_skewness

\#\#	A	C	D	E	F	G
\#\#	0.670502595	0.347813248	-0.058540442	1.782876260	-0.102739748	0.091338300
\#\#	H	I	K	L	M	N
\#\#	1.135783661	0.293474879	0.223433207	-0.172566877	0.744002991	0.633532783
\#\#	P	Q	R	S	T	V
\#\#	1.493903282	0.306716333	1.241930812	1.448521897	-0.006075043	1.338971930
\#\#	W	Y				
\#\#	1.831047440	1.694362388				

Determine coefficients of correlation, TRANSFORMED data

An easily interpretable test is a correlation 2D-plot for investigating multicollinearity or feature reduction. Fewer attributes "means decreased computational time and complexity. Secondly, if two predictors are highly correlated, this implies that they measure the same underlying information. Removing one should not compromise the performance of the model and might lead to a more parsimonious and interpretable model. Third, some models can be crippled by predictors with degenerate distributions." ${ }^{10}$

Pearson's correlation coefficient:

$$
\begin{gather*}
\rho_{x, y}=\frac{E\left[\left(X-\mu_{x}\right)\left(X-\mu_{y}\right)\right]}{\sigma_{x} \sigma_{y}} \tag{14}\\
r_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{1}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \tag{15}
\end{gather*}
$$

[^5]
Correlation Plot, TRANSFORMED data


```
c_m_corr_mat["T", "N"]
```

\#\# [1] 0.7098085

No values in the correlation matrix meet the 0.75 cut off criteria for problems.

Boruta - Dimensionality Reduction, TRANSFORMED data

Perform Boruta search

NOTE: $m c A d j=T R U E$: If True, multiple comparisons will be adjusted using the Bonferroni method to calculate p-values. Therefore, $p_{i} \leq \frac{\alpha}{m}$ where α is the desired p-value and m is the total number of null hypotheses.

```
set.seed(1000)
#registerDoMC(cores = 3) # Start multi-processor mode
start_time <- Sys.time() # Start timer
boruta_output <- Boruta(Class ~ .,
    data = c_m_class_20[, -1],
    mcAdj = TRUE, # See Note above.
        doTrace = 1) # doTrace = 1, represents non-verbose mode.
## After 11 iterations, +32 secs:
```

```
## confirmed 20 attributes: A, C, D, E, F and 15 more;
## no more attributes left.
#registerDoSEQ() # Stop multi-processor mode
end_time <- Sys.time() # End timer
end_time - start_time # Display elapsed time
## Time difference of 31.72578 secs
```

Plot Variable Importance, TRANSFORMED data

```
plot(boruta_output,
    cex.axis = 1,
    las = 2,
    ylim = c(-5, 50),
    main = "Variable Importance, TRANSFORMED data(Bigger=Better)")
```

Variable Importance, TRANSFORMED data(Bigger=Better)

Variable Importance Scores, TRANSFORMED data

```
roughFixMod <- TentativeRoughFix(boruta_output)
## Warning in TentativeRoughFix(boruta_output): There are no Tentative attributes!
## Returning original object.
imps <- attStats(roughFixMod)
imps2 <- imps[imps$decision != "Rejected", c("meanImp", "decision")]
meanImps <- imps2[order(-imps2$meanImp), ] # descending sort
kable(meanImps) %>% kable_styling(bootstrap_options = c("striped", "hover"))
```

	meanImp	decision
R	43.17613	Confirmed
H	34.30370	Confirmed
P	28.70674	Confirmed
C	27.72357	Confirmed
K	27.60838	Confirmed
E	26.18872	Confirmed
Y	22.84975	Confirmed
T	21.66359	Confirmed
S	21.44119	Confirmed
A	20.54316	Confirmed
N	20.10100	Confirmed
V	18.77068	Confirmed
I	18.69155	Confirmed
F	18.18632	Confirmed
D	17.64435	Confirmed
G	16.15207	Confirmed
W	15.77085	Confirmed
L	15.27614	Confirmed
M	14.83421	Confirmed
Q	14.12976	Confirmed

```
# knitr::kable(meanImps,
# full_width = F,
# position = "left",
# caption = "Mean Importance Scores छ Decision, TRANSFORMED data")
```

The Boruta Random Rorest test shows that all features are essential therefore none should be dropped from TRANSFORMED data.

EDA Conclusion

Feature Selection \& Extraction

It was determined early on that three amino acids (C, F, I) from the data amino acid percent compositions (c_m_RAW_AAC.csv) had Skewness greater than two. It was found that tranforming the features using the square root function lowered the skewness to $\{-0.102739 \leq$ skew after transformation $\leq 0.3478132\}$.

Table 7.1, Skewness Before And After Square-Root Transform

Amino Acid	Initial Skewness	Skew After Square-Root Transform
C, Cysteine	2.538162	0.347813248
F, Phenolalanine	2.128118	-0.102739748
I, Isoleucine	2.192145	0.293474879

The transformations of the three amino acids (C, F, I) did not appriciably change the Correlation coefficient, R . Therefore no R values were above 0.75 before or after testing. The highest coeffiecient of correlation being Threonine and Argnine with an R of 0.7098 . This indicates that no features are collinear. Therefore the transformed data is used throughout this experiment.

Information Block**

How to: Dimension Reduction using High Correlation
How to reduce features given high correlation $(|R|>=0.75)\{-\}$

1. Calculate the correlation matrix of the predictors.
2. If the correlation plot produced of any two variables is greater than or equal to ($|R|>=0.75$), then we could consider feature elimination. This interesting heuristic approach would be used for determining which feature to eliminate. ${ }^{11}$
3. Determine if the two predictors associated with the most significant absolute pairwise correlation (R $>|0.75|)$, call them predictors A and B.
4. Determine the average correlation between A and the other variables. Do the same for predictor B.
5. If A has a more significant average correlation, remove it; otherwise, remove predictor B.
6. Repeat Steps 2-4 until no absolute correlations are above the threshold.

An alternative test for variable importance carried out is called Boruta. Boruta builds Random Forests then "finds relevant features by comparing original attributes' importance with importance achievable at random." 12

Boruta is used for dimensionality reduction of the c_m_Transformed data. Bortua showed that all dependent features are essential for the generation of a Random Forest Decision Tree. It would wise to keep all features for that model test and throughout the generation of other models. All features have decisive mean importance, which is generated by a Gini calculation.

[^6]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Exploratory_data_analysis
 ${ }^{2}$ https://www.itl.nist.gov/div898/handbook/
 ${ }^{3}$ Roger Peng, Exploratory Data Analysis with R, https://leanpub.com/exdata, 2016
 ${ }^{4}$ Ronald Pearson, Exploratory Data Analysis Using R, CRC Press, ISBN:9781138480605, 2018

[^1]: ${ }^{5}$ Miron Kursa, Witold Rudnicki, Feature Selection with the Boruta Package, DOI:10.18637/jss.v036.i11, 2010
 ${ }^{6}$ Ronald Pearson, Exploratory Data Analysis Using R, CRC Press, ISBN:9781138480605, 2018

[^2]: ${ }^{7}$ Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018, P. 43

[^3]: ${ }^{8}$ Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018, P. 47 (http:// appliedpredictivemodeling.com/)

[^4]: ${ }^{9}$ https://notabug.org/mbq/Boruta/

[^5]: ${ }^{10}$ Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018

[^6]: ${ }^{11}$ Max Kuhn and Kjell Johnson, Applied Predictive Modeling, Springer Publishing, 2018, (http://appliedpredictivemodeling. com/)
 ${ }^{12}$ https://notabug.org/mbq/Boruta/

